11. A dentist causes the bit of a high-speed drill to accelerate from an angular speed of 1.05 x $10^{4} \mathrm{rad} / \mathrm{s}$ to an angular speed of $3.14 \times 10^{4} \mathrm{rad} / \mathrm{s}$. In the process, the bit turns through 1.88 x 10^{4} rad. Assuming a constant angular acceleration, how long would it take the bit to reach its maximum speed of $7.85 \times 10^{4} \mathrm{rad} / \mathrm{s}$, starting from rest?

$$
\omega_{f}=\omega_{0}+\alpha t
$$

Solving for t

$$
t=\frac{\omega_{f}-\omega_{0}}{\alpha}=\frac{\omega_{f}}{\alpha}
$$

So we need an angular acceleration. We have been given the angle moved through to change between two angular speeds.

$$
\begin{gathered}
\omega_{B}^{2}=\omega_{A}^{2}+2 \alpha \theta \\
\alpha=\frac{\omega_{B}^{2}-\omega_{A}^{2}}{2 \theta}=\frac{\left(3.14 \times 10^{4} \mathrm{rad} / \mathrm{s}\right)^{2}-\left(1.05 \times 10^{4} \mathrm{rad} / \mathrm{s}\right)^{2}}{2\left(1.88 \times 10^{4} \mathrm{rad}\right)} \\
\alpha=\frac{\omega_{B}^{2}-\omega_{A}^{2}}{2 \theta}=\frac{9.860 \times 10^{8} \mathrm{rad}^{2} / s^{2}-1.103 \times 10^{8} \mathrm{rad}^{2} / s^{2}}{3.76 \times 10^{4} \mathrm{rad}}=\frac{8.757 \times 10^{8} \mathrm{rad}^{2} / s^{2}}{3.76 \times 10^{4} \mathrm{rad}} \\
\alpha=\frac{8.757 \times 10^{8} \mathrm{rad}^{2} / \mathrm{s}^{2}}{3.76 \times 10^{4} \mathrm{rad}}=2.329 \times 10^{4} \mathrm{rad} / \mathrm{s}^{2}
\end{gathered}
$$

Now we can use this angular acceleration in the equation

$$
t=\frac{\omega_{f}}{\alpha}=\frac{7.85 \times 10^{4} \mathrm{rad} / \mathrm{s}}{2.329 \times 10^{4} \mathrm{rad} / \mathrm{s}^{2}}=3.371 \mathrm{~s}
$$

$t=3.37 s$

Dr. Donovan's Classes	Dr. Donovan's PH 201
Page	Homework Page
NMU Physics	NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu
This page last updated on April 7, 2023

