| Projectile Motion Hand-in Snee |
|--------------------------------|
|--------------------------------|

| Name _ |      |
|--------|------|
| Day:   | Time |

Partners:\_

What to turn in:

- 1. This page, completed, including instructor's check mark for completing the handout.
- 2. On the back of this page, show the calculation of  $t_1$  as explained in part B.3. Make sure you include a sketch showing the positive directions, and the list of variables.
- 3. First target sheet with clear calculations for  $R_0$  (on a separate page if needed)
- 4. Second target sheet with different heading and clear calculations for  $R_1$ .
- 5. Any other materials your instructor asks for

Staple the pages together in this order.

Instructor check mark showing completed handout calculations:



Fill in the following results from your worksheet:

| A.3 | horizontally-fired range $R_0$     |  |
|-----|------------------------------------|--|
| A.4 | height above floor <i>h</i>        |  |
| A.4 | muzzle velocity $v_0$              |  |
| B.1 | Angle $\theta$                     |  |
| B.1 | height above floor $h_1$           |  |
| B.1 | final vertical velocity $v_y$      |  |
| B.1 | flight time $t_1$                  |  |
| B.2 | calculated angle-fired range $R_1$ |  |
| B.3 | measured angle-fired range $R_1$   |  |
| B.3 | % difference                       |  |

## Solving the quadratic equation to find the hang time.

For the motion in part B, list the numerical values of  $\Delta y$ , a, and  $v_{oy}$  in the list below. Get the signs right, using the convention that the y axis points <u>upwards</u>.

 $\Delta y =$ 

a =

 $v_{oy} =$ 

 $v_y = (\text{don't know, don't need})$ 

 $t = t_1$  (find this one)

Now calculate the hang time t1 using the above information and the equation

$$y = v_{0y}t + \frac{1}{2}a t^2.$$

Note: if your signs are incorrect, your answer will be wrong. <u>Show your work.</u> Your answer should agree with what you found in part B1.