Name \qquad
Day: \qquad Time \qquad

Partners:

\qquad
What to turn in:

1. This page, completed, including instructor's check mark for completing the handout.
2. On the back of this page, show the calculation of t_{1} as explained in part B.3. Make sure you include a sketch showing the positive directions, and the list of variables.
3. First target sheet with clear calculations for R_{0} (on a separate page if needed)
4. Second target sheet with different heading and clear calculations for R_{1}.
5. Any other materials your instructor asks for

Staple the pages together in this order.

Instructor check mark showing completed handout calculations: \square

Fill in the following results from your worksheet:

A. 3	horizontally-fired range R_{0}	
A. 4	height above floor h	
A. 4	muzzle velocity v_{0}	
B. 1	Angle θ	
B. 1	height above floor h_{1}	
B.1	final vertical velocity v_{y}	
B.1	flight time t_{1}	
B. 2	calculated angle-fired range R_{1}	
B.3	measured angle-fired range R_{1}	
B.3	\% difference	

Solving the quadratic equation to find the hang time.
For the motion in part B , list the numerical values of $\Delta y, a$, and $v_{o y}$ in the list below. Get the signs right, using the convention that the y axis points upwards.
$\Delta y=$
$a=$
$v_{o y}=$
$v_{y}=($ don't know, don't need $)$
$t=t_{1}$ (find this one)
Now calculate the hang time t_{1} using the above information and the equation

$$
y=v_{0 y} t+\frac{1}{2} a t^{2}
$$

Note: if your signs are incorrect, your answer will be wrong. Show your work. Your answer should agree with what you found in part B1.

