5. In a vacuum, two particles have charges of q_{1} and q_{2}, where $q_{1}=+3.5 \mu \mathrm{C}$. They are separated by a distance of 0.26 m , and particle 1 experiences an attractive force of 3.4 N . What is q_{2} (magnitude and sign)?

Attractive force means opposite charges so the sign of q_{2} is negative since q_{1} is a positive charge. Force is found from Coulomb's law:

$$
F=k \frac{q_{1} q_{2}}{r_{12}^{2}}
$$

Solve for q_{2}

$$
\begin{gathered}
q_{2}=\frac{F r_{12}^{2}}{k q_{1}}=\frac{(3.4 \mathrm{~N})(0.26 \mathrm{~m})^{2}}{\left(8.99 \times 10^{\left.9 \mathrm{Nm}^{2} / C^{2}\right)\left(3.5 \times 10^{-6} \mathrm{C}\right)}=\frac{0.2298 \mathrm{Nm}^{2}}{3.1465 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C}}\right.} \\
q_{2}=\frac{0.2298 \mathrm{Nm}^{2}}{3.1465 \times 10^{4} \mathrm{Nm}^{2} / \mathrm{C}}=7.303 \times 10^{-6} \mathrm{C}
\end{gathered}
$$

So

$$
q_{2}=-7.3 \times 10^{-6} C=-7.3 \mu \mathrm{C}
$$

Dr. Donovan's Classes	
Page	Dr. Donovan's PH 202
NMU Physics	NMU Main Page
Department Web Page	

Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on January 7, 2021

