20. A tiny ball (mass $=0.012 \mathrm{~kg}$) carries a charge of $-18 \mu \mathrm{C}$. What electric field (magnitude and direction) is needed to cause the ball to float above the ground?

$$
\begin{gathered}
\sum_{y}=F_{E l}-m g=m a_{y}=0 \\
F_{E l}-m g=0 \\
F_{E l}=m g=q E
\end{gathered}
$$

Solve for E

$$
E=\frac{m g}{q}=\frac{(0.012 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{18 \times 10^{-6} \mathrm{C}}=6.533 \times 10^{3} \mathrm{~N} / \mathrm{C}
$$

Since we need $F_{E I}$ to point up and we have a negative charge, we need the Field to point down, since the negative charge will then create a force acting up against gravity.

$$
\vec{E}=6.5 \times 10^{3 N} / C \text { down }
$$

Dr. Donovan's Classes	Dr. Donovan's PH 202 Page
NMU Physics NMU Main Page	

Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on January 7, 2021

