20. A tiny ball (mass = 0.012 kg) carries a charge of -18 μ C. What electric field (magnitude and direction) is needed to cause the ball to float above the ground?

$$F_{El}$$
 mg
 F_{El}
 $F_y = F_{El} - mg = ma_y = 0$
 $F_{El} - mg = 0$
 $F_{El} = mg = qE$

Solve for E

$$E = \frac{mg}{q} = \frac{(0.012 \ kg) \left(9.80 \ \frac{m}{s^2}\right)}{18 \ x \ 10^{-6} \ C} = 6.533 \ x \ 10^3 \ \frac{N}{C}$$

Since we need F_{EI} to point up and we have a negative charge, we need the Field to point down, since the negative charge will then create a force acting up against gravity.

$$\vec{E} = 6.5 \times 10^3 \, N/C \, \widehat{down}$$

<u>Dr. Donovan's Classes</u>	<u>Dr. Donovan's PH 202</u>
<u>Page</u>	<u>Homework Page</u>
NMU Physics Department Web Page	NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu
This page last updated on January 7, 2021