26. The drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface 1 has an area of $1.7 \mathrm{~m}^{2}$, while surface 2 has an area of $3.2 \mathrm{~m}^{2}$. The electric field $\overrightarrow{\boldsymbol{E}}$ in the drawing is uniform and has a magnitude of $250 \mathrm{~N} / \mathrm{C}$. Find the magnitude of the electric flux through (a) surface 1 and (b) surface 2.

Surface 1

Surface 2
Consider the angles θ_{1} and θ_{2} in the figure below.

$\theta_{1}=35^{\circ}$ as it is making the same angle as the 35° shown in the figure.

$$
\theta_{2}=180^{\circ}-\left(35^{\circ}+90^{\circ}\right)=55^{\circ}
$$

Now Flux is found from

$$
\Phi_{E}=\vec{E} \cdot \vec{A}=E A \cos \left(\theta_{E A}\right)
$$

So for surface 1

$$
\Phi_{1}=E A_{1} \cos \left(\theta_{1}\right)=(250 \mathrm{~N} / \mathrm{C})\left(1.7 \mathrm{~m}^{2}\right) \cos \left(35^{\circ}\right)=348.1 \mathrm{Nm}^{2} / C
$$

And for surface 2

$$
\Phi_{2}=E A_{2} \cos \left(\theta_{2}\right)=(250 \mathrm{~N} / \mathrm{C})\left(3.2 \mathrm{~m}^{2}\right) \cos \left(55^{\circ}\right)=458.9^{\mathrm{Nm}^{2} / C}
$$

$$
\begin{aligned}
& \Phi_{1}=350 \mathrm{Nm}^{2} / \mathrm{C} \\
& \Phi_{2}=460 \mathrm{Nm}^{2} / \mathrm{C}
\end{aligned}
$$

Dr. Donovan's Classes	Dr. Donovan's PH 202
Page	Homework Page

NMU Physics Department Web Page

NMU Main Page
Please send any comments or questions about this page to ddonovan@nmu.edu

This page last updated on January 7, 2021

