27. A surface completely surrounds $a+2.0 \times 10^{-6} \mathrm{C}$ charge. Find the electric flux through this surface when the surface is (a) a sphere with a radius of 0.50 m , (b) a sphere with a radius of 0.25 m , and (c) a cube with edges that are 0.25 m long.

Gauss's Law tells us that the electric flux is equal to the net charge enclosed divided by the permittivity of free space or in equation form

$$
\Phi_{E}=\vec{E} \cdot \vec{A}=E A \cos \left(\theta_{E A}\right)=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}
$$

Since in all three of these shapes the surface area encloses the charge, the flux is the same regardless of the shape.

$$
\begin{gathered}
\Phi_{E}=\frac{Q_{\text {enclosed }}}{\varepsilon_{0}}=\frac{\left(2.0 \times 10^{-6} \mathrm{C}\right)}{\left(8.85 \times 10^{-12 C^{2}} /\left(\mathrm{Nm}^{2}\right)\right)}=2.260 \times 10^{5 \mathrm{Nm}^{2} / C} \\
\Phi_{E}=2.3 \times 10^{5 \mathrm{Nm}^{2} / C}
\end{gathered}
$$

Dr. Donovan's Classes	
Page	Dr. Donovan's PH 202
NMU Physics	NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on January 7, 2021

