



A beam of red light ( $\lambda_{air} = 650.0 \text{ nm}$ ) strikes the interface between air ( $n_{air} = 1.000$ ) and glass with an angle of incidence of ( $\theta_i = 43.0^\circ$ ). Inside the glass the light appears to be green ( $\lambda_{glass} = 540.0 \text{ nm}$ ). What is the index of refraction of this glass?

1.765



**A.** 0.821 **B.** 

$$\lambda_{glass} = \frac{\lambda_{air}}{n_{glass}}$$

C.

Solve for the index of refraction

$$n_{glass} = \frac{\lambda_{air}}{\lambda_{glass}} = \frac{650.0 \text{ } nm}{540.0 \text{ } nm} = 1.204$$

## So, the correct answer is C !

While swimming underwater ( $n_{water} = 1.333$ ), Sue looks up and sees a drone hovering directly above her. Sue estimates that the drone is 0.616 m above the surface of the water. Use ( $n_{air} = 1.000$ ). What is the actual height of the drone above the surface of the water?

| Α. | 0.821 m | С. | 0.205 m |
|----|---------|----|---------|
| В. | 0.462 m | D. | 1.85 m  |

For apparent depth use the lens maker equation

$$\frac{n_o}{o} + \frac{n_i}{i} = \frac{n_i - n_o}{R} = \frac{n_i - n_o}{\infty} = 0$$

Solve for object distance

$$o = -i\left(\frac{n_o}{n_i}\right) = -i\left(\frac{n_{air}}{n_{water}}\right) = -(-0.616 \ m)\left(\frac{1.000}{1.333}\right) = +0.462 \ m$$

- sign with 0.616 m indicates virtual image! The object being positive indicates real object!

## So, the correct answer is B !

At an Ocean Spray facility, a large amount of cranberry juice is spilled creating a large puddle on the floor. When a light ray makes an angle of incidence of  $53.49^{\circ}$  on the interface between air  $(n_{air} = 1.000)$  and the cranberry juice, the light ray that is reflected is completely plane polarized parallel to the horizontal. What is the index of refraction for the cranberry juice?

**A. 1.351 B.** 0.804 **C.** 1.244 **D.** 1.681

The angle of incidence for the reflected ray to be completely horizontally polarized is known as Brewster's angle and it is found from the expression:

$$n_{air}\sin(\theta_{inc}) = n_{cranberry}\sin(\theta_{ref})$$

The refracted ray and the reflected ray make a right angle so

$$\boldsymbol{\theta}_{ref} + \boldsymbol{\theta}_{inc} = \mathbf{90}^\circ$$

Or

$$\theta_{ref} = 90^{\circ} - \theta_{inc}$$

 $n_{air} \sin(\theta_{inc}) = n_{cranberry} \sin(\theta_{ref}) = n_{wcranberry} \sin(90^{\circ} - \theta_{inc}) = n_{cranberry} \cos(\theta_{inc})$  rearranging

$$n_{air}\frac{\sin(\theta_{inc})}{\cos(\theta_{inc})} = n_{air}\tan(\theta_{inc}) = n_{air}\tan(\theta_{Brewster}) = n_{cranberry}$$

$$n_{cranberry} = n_{air} \tan(\theta_{Brewster}) = (1.000) \tan(53.49^\circ) = 1.351$$

So, the correct answer is A !

A beam of light ( $\lambda_0 = 614.0 \text{ nm}$ ) is traveling in a vacuum when it enters an experimental material. The angle of incidence is  $0.00^{\circ}$  and when measured the wavelength of the light is now ( $\lambda_n = 2.330 \text{ nm}$ ). What is the speed of this light inside this experimental material?

A.  $7.90 \times 10^{10} \text{ m/}_{\text{S}}$  C.  $1.14 \times 10^6 \text{ m/}_{\text{S}}$ 

**B.**  $4.88 \times 10^5 \text{ m/}_{\text{S}}$  **D.**  $1.29 \times 10^6 \text{ m/}_{\text{S}}$ 

$$\lambda_n = \frac{\lambda_0}{n}$$

Solving for n

$$n=\frac{\lambda_0}{\lambda_n}=\frac{c}{v_n}$$

Solving for speed in medium

$$v_n = \frac{c\lambda_n}{\lambda_0} = \frac{(2.998 \ x \ 10^8 \ m/_s)(2.330 \ nm)}{614.0 \ nm} = 1.14 \ x \ 10^6 \ m/_s$$

So, the correct answer is C !

| Dr. Donovan's Classes<br>Page             | <u>Dr. Donovan's PH 202</u><br>Lecture Quiz & Exam<br><u>Solutions</u> |
|-------------------------------------------|------------------------------------------------------------------------|
| <u>NMU Physics</u><br>Department Web Page | NMU Main Page                                                          |

**Please send any comments or questions about this page to <u>ddonovan@nmu.edu</u>** *This page last updated on November 17, 2023*