PH 220

Quiz # 01 (10 pts)

Solution Name

An American football has a length of 28.50 cm. The playing zone of an American football field is 91.44 m long. How many whole footballs could be lined up touching the end of one football to the next football, starting from one goal line to the opposing goal line?

C.

- Α. 320
- B.
- 321
- 32
- D. 3201

$$L = Nd$$

$$N = \frac{L}{d} = \frac{91.44 \ m}{28.50 \ cm} \ x \ \frac{100 \ cm}{m} = 320.8$$

"Whole footballs" means we truncate not round! So N=320

So, the correct answer is A!

Vector \overrightarrow{A} is shown on the right. It has a magnitude of 137. $^{\rm m}/_{\rm S}$. It makes angle $\theta = 39.4^{\circ}$ with the y-axis as shown. What is the x-component of vector \vec{A} ?

- A.
- 106. $^{\rm m}/_{\rm S}$ B. 87. 0 $^{\rm m}/_{\rm S}$ C. 113. $^{\rm m}/_{\rm S}$ D.
- 137. m/s

With picture as shown, the x-component of \vec{A} would be opposite to the angle θ , so we should use the Sine function

So, the correct answer is B!

Two vectors are given as $\vec{A} = 4\widehat{(i)} - 3\widehat{(j)} + 7\widehat{(k)}$ and $\vec{B} = -9\widehat{(i)} - 5\widehat{(j)} + 11\widehat{(k)}$. What is vector \vec{C} if $\vec{C} = \vec{B} - 2\vec{A}$?

A.
$$\vec{C} = -13 \ \widehat{(1)} - 2 \ \widehat{(1)} + 4 \ \widehat{(k)}$$
 C. $\vec{C} = -17 \ \widehat{(1)} + \widehat{(1)} - 3 \ \widehat{(k)}$
B. $\vec{C} = -1 \ \widehat{(1)} - 11 \ \widehat{(1)} + 25 \ \widehat{(k)}$ D. $\vec{C} = 22 \ \widehat{(1)} + 7 \ \widehat{(1)} - 15 \ \widehat{(k)}$

$$\vec{C} = \vec{B} - 2\vec{A}$$

$$\vec{C} = \vec{B} - 2\vec{A} = (-9(\hat{\iota}) - 5(\hat{\jmath}) + 11(\hat{k})) - 2(4(\hat{\iota}) - 3(\hat{\jmath}) + 7(\hat{k}))$$

$$\vec{C} = (-9 - 8)(\hat{\iota}) + (-5 + 6)(\hat{\jmath}) + (11 - 14)(\hat{k})$$

$$\vec{C} = -17(\hat{\iota}) + (\hat{\iota}) - 3(\hat{k})$$

So, the correct answer is C!

An object is found to have a position as a function of time given by:

$$\vec{S} = (16.0 \text{ m} - 5.75 \text{ m/}_{\text{S}} t + 2.40 \text{ m/}_{\text{S}^2} t^2) (\widehat{\text{East}})$$

What is the instantaneous velocity at the time t = 0.500 s?

A. 4.45
$$^{\text{m}}$$
/_S ($\widehat{\text{East}}$) **C.** 3.35 $^{\text{m}}$ /_S ($\widehat{\text{East}}$)

B.
$$4.45 \text{ m/}_{\text{S}} (\widehat{\text{West}})$$
 D. $3.35 \text{ m/}_{\text{S}} (\widehat{\text{West}})$

$$\vec{v} = \frac{d\vec{S}}{dt} = \frac{d}{dt} \left(\left(16.0 \ m - 5.75 \ \frac{m}{s} t + 2.40 \ \frac{m}{s^2} \right) (\widehat{East}) \right)$$

$$\vec{v} = \left(-5.75 \ \frac{m}{s} + 4.80 \ \frac{m}{s^2} t\right) (\widehat{East}) = \left(-5.75 \ \frac{m}{s} + 4.80 \ \frac{m}{s^2} (0.500 \ s)\right) (\widehat{East})$$

$$\vec{v} = (-5.75 \ m/_S + 2.40 \ m/_S)(\widehat{East}) = -3.35 \ m/_S(\widehat{East}) = 3.35 \ m/_S(\widehat{Vest})$$

So, the correct answer is D!

A truck is moving with a speed of $7.32~^{\rm m}/_{\rm S}$ when it begins to uniformly slow down. After a time of $14.3~{\rm s}$, the truck reaches a speed of $2.65~^{\rm m}/_{\rm S}$. What is the magnitude of the average acceleration of the truck during this period of time?

A.
$$3.06 \text{ m/}_{\text{S}^2}$$
 B. $6.68 \text{ m/}_{\text{S}^2}$ C. $0.697 \text{ m/}_{\text{S}^2}$ D. $0.327 \text{ m/}_{\text{S}^2}$

$$\overline{a} = \frac{v_f - v_0}{t} = \frac{2.65 \text{ m/}_{\text{S}} - 7.32 \text{ m/}_{\text{S}}}{14.3 \text{ s}} = \frac{-4.67 \text{ m/}_{\text{S}}}{14.3 \text{ s}} = -0.327 \text{ m/}_{\text{S}^2}$$

The minus sign means the truck is slowing down. Acceleration is in opposite direction of initial velocity!

So, the correct answer is D!

<u>Dr. Donovan's Classes</u> <u>Page</u> Dr. Donovan's PH 220
Lecture Quiz & Exam
Solutions

NMU Physics

Department Web Page

NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu
This page last updated on January 26, 2024