Quiz Average $5.75 \quad$ Quiz High Score 10

PH 220
Quiz \# 01 (10 pts) Name
Solution

An American football has a length of 28.50 cm . The playing zone of an American football field is 91.44 m long. How many whole footballs could be lined up touching the end of one football to the next football, starting from one goal line to the opposing goal line?
A. 320
B.
321
C.
32
D. 3201

$$
\begin{gathered}
L=N d \\
N=\frac{L}{d}=\frac{91.44 \mathrm{~m}}{28.50 \mathrm{~cm}} \times \frac{100 \mathrm{~cm}}{m}=320.8
\end{gathered}
$$

"Whole footballs" means we truncate not round! So $\boldsymbol{N}=\mathbf{3 2 0}$

So, the correct answer is A !

Vector $\overrightarrow{\mathrm{A}}$ is shown on the right. It has a magnitude of 137. m / s. It makes angle $\theta=39.4^{\circ}$ with the y-axis as shown. What is the x-component of vector $\overrightarrow{\mathrm{A}}$?

A. $\quad 106 . \mathrm{m} / \mathrm{s}$
B. $\quad 87.0 \mathrm{~m} / \mathrm{s}$
C. $\quad 113 . \mathrm{m} / \mathrm{s}$
D. $\quad 137 . \mathrm{m} / \mathrm{s}$

With picture as shown, the x-component of \vec{A} would be opposite to the angle θ, so we should use the Sine function

$$
A_{x}=A \sin (\theta)=(137 . \mathrm{m} / \mathrm{s}) \sin \left(39.4^{\circ}\right)=86.96 \mathrm{~m} / \mathrm{s}
$$

So, the correct answer is B !

Two vectors are given as $\vec{A}=4 \widehat{(\mathrm{l})}-3 \widehat{(\mathrm{~J})}+7 \widehat{(\mathrm{k})}$ and $\overrightarrow{\mathrm{B}}=-9 \widehat{(\mathrm{l})}-5 \widehat{(\mathrm{\jmath})}+11 \widehat{(\mathrm{k})}$. What is vector $\overrightarrow{\mathrm{C}}$ if $\vec{C}=\vec{B}-2 \vec{A}$?
A. $\quad \overrightarrow{\mathrm{C}}=-13 \widehat{(\mathrm{I})}-2 \widehat{(\mathrm{~J})}+4 \widehat{(\mathrm{k})}$
C. $\quad \overrightarrow{\mathbf{C}}=-17 \widehat{(\mathbf{1})}+\widehat{(\mathbf{j})}-\mathbf{3 (\widehat { k })}$
B.

$$
\overrightarrow{\mathrm{C}}=-1 \widehat{(\mathrm{l})}-11 \widehat{(\mathrm{\jmath})}+25 \widehat{(\mathrm{k})}
$$

D. $\quad \overrightarrow{\mathrm{C}}=22 \widehat{(\mathrm{l})}+7 \widehat{(\mathrm{~J})}-15 \widehat{(\mathrm{k})}$

$$
\begin{gathered}
\vec{C}=\vec{B}-2 \vec{A} \\
\vec{C}=\vec{B}-2 \vec{A}=(-9 \widehat{(\imath)}-5 \widehat{(J)}+11 \widehat{(k)})-2(4 \widehat{(\widehat{\imath})}-3 \widehat{(\jmath)}+7 \widehat{(k)}) \\
\vec{C}=(-9-8) \widehat{\imath})+(-5+6) \widehat{(\jmath)}+(11-14) \widehat{(\widehat{k})} \\
\vec{C}=-17 \widehat{(\imath)}+\widehat{(\jmath)}-3(\widehat{k})
\end{gathered}
$$

So, the correct answer is C !

An object is found to have a position as a function of time given by:

$$
\overrightarrow{\mathrm{S}}=\left(16.0 \mathrm{~m}-5.75 \mathrm{~m} / \mathrm{s} \mathrm{t}+2.40 \mathrm{~m} / \mathrm{s}^{2} \mathrm{t}^{2}\right)(\widehat{\text { East }})
$$

What is the instantaneous velocity at the time $t=0.500 \mathrm{~s}$?
A.
$4.45 \mathrm{~m} / \mathrm{s}$ ($\overline{\text { East }})$
C.
$3.35 \mathrm{~m} / \mathrm{s}(\widehat{\text { East }})$
B.

$$
4.45 \mathrm{~m} / \mathrm{s}(\widehat{\mathrm{West}})
$$

D.
$3.35 \mathrm{~m} / \mathrm{s}(\widehat{\text { West }})$

$$
\vec{v}=\frac{d \vec{S}}{d t}=\frac{d}{d t}\left(\left(16.0 m-5.75 \mathrm{~m} / \mathrm{s} t+2.40 \mathrm{~m} / \mathrm{s}^{2} t^{2}\right)(\widehat{E a s t})\right)
$$

$$
\vec{v}=\left(-5.75 \mathrm{~m} / \mathrm{s}+4.80 \mathrm{~m} / \mathrm{s}^{2} t\right)(\widehat{\text { East }})=\left(-5.75 \mathrm{~m} / \mathrm{s}+4.80 \mathrm{~m} / \mathrm{s}^{2}(0.500 \mathrm{~s})\right)(\widehat{\text { East }})
$$

$$
\vec{v}=(-5.75 \mathrm{~m} / \mathrm{s}+2.40 \mathrm{~m} / \mathrm{s})(\widehat{\text { East }})=-3.35 \mathrm{~m} / \mathrm{s}(\widehat{\text { East }})=3.35 \mathrm{~m} / \mathrm{s}(\widehat{\text { West }})
$$

So, the correct answer is D !

A truck is moving with a speed of $7.32 \mathrm{~m} / \mathrm{s}$ when it begins to uniformly slow down. After a time of 14.3 s , the truck reaches a speed of $2.65 \mathrm{~m} / \mathrm{s}$. What is the magnitude of the average acceleration of the truck during this period of time?
A. $\quad 3.06 \mathrm{~m} / \mathrm{s}^{2}$
B. $\quad 6.68 \mathrm{~m} / \mathrm{s}^{2}$
C. $\quad 0.697 \mathrm{~m} / \mathrm{s}^{2}$
D. $0.327 \mathrm{~m} / \mathrm{s}^{2}$

$$
\bar{a}=\frac{v_{f}-v_{0}}{t}=\frac{2.65 \mathrm{~m} / \mathrm{s}-7.32 \mathrm{~m} / \mathrm{s}}{14.3 \mathrm{~s}}=\frac{-4.67 \mathrm{~m} / \mathrm{s}}{14.3 \mathrm{~s}}=-0.327 \mathrm{~m} / \mathrm{s}^{2}
$$

The minus sign means the truck is slowing down. Acceleration is in opposite direction of initial velocity!

So, the correct answer is D !

$$
\frac{\text { Dr. Donovan's Classes }}{\underline{\text { Page }}}
$$

Dr. Donovan's PH 220 Lecture Quiz \& Exam Solutions

NMU Physics
Department Web Page
NMU Main Page
Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on January 26, 2024

