
A. A
B. B
C. C
D. D

Since speed is the slope of distance vs time, the portion of the plot with a negative slope is the correct answer. In this case the slope is negative in region $\mathbf{C}$.

So, the correct answer is C !

A truck is moving with a speed of $7.32 \mathrm{~m} / \mathrm{s}$ when it begins to uniformly slow down. After a time of 14.3 s , the truck has travelled a distance of 71.3 m . What is the final speed of the truck at this point?
A. $\quad 17.3 \mathrm{~m} / \mathrm{s}$
B. $\quad 9.97 \mathrm{~m} / \mathrm{s}$
C. $\quad 12.3 \mathrm{~m} / \mathrm{s}$
D. $\quad 2.65 \mathrm{~m} / \mathrm{s}$

$$
S=\frac{1}{2}\left(v_{0}+v_{f}\right) t
$$

Solve for $\boldsymbol{v}_{\boldsymbol{f}}$

$$
v_{0}+v_{f}=\frac{2 S}{t}
$$

$$
v_{f}=\frac{2 S}{t}-v_{0}=\frac{2(71.3 \mathrm{~m})}{14.3 \mathrm{~s}}-7.32 \mathrm{~m} / \mathrm{s}=9.97 \mathrm{~m} / \mathrm{s}-7.32 \mathrm{~m} / \mathrm{s}=2.65 \mathrm{~m} / \mathrm{s}
$$

So, the correct answer is D !

A bottle rocket is launched from the ground with an initial speed of $23.7 \mathrm{~m} / \mathrm{s}$ pointed straight up. What is the acceleration of the bottle rocket at a time of 1.71 s after launch? Ignore any effects caused by air resistance.
A.
$9.80 \mathrm{~m} / \mathrm{s}^{2}(\widehat{\mathrm{Down}})$
C. $\quad 6.94 \mathrm{~m} / \mathrm{s}^{2} \widehat{(U p)}$
B.

$$
0.00 \mathrm{~m} / \mathrm{s}^{2}(\widehat{\text { Down }})
$$

D.
$26.2 \mathrm{~m} / \mathrm{s}^{2} \overline{(U p)}$

Since the only force acting is gravity the object is in free fall so the acceleration is the acceleration due to gravity $9.80 \mathrm{~m} / \mathrm{s}^{2}(\widehat{\text { Down }})$

## So, the correct answer is A!

A hot air balloon with a gondola is rising with a constant speed of $4.35 \mathrm{~m} / \mathrm{s}$. At some point a ballast weight is cut from the balloon gondola. The ballast weight has a mass of 20.0 kg . The weight strikes the ground 4.11 s after it is cut from the balloon gondola. How high above the ground was the weight cut from the balloon gondola? As usual ignore all effects of air resistance.
A. $\quad 101 . \mathrm{m}$
B.
64.9 m
C. $\quad 2.26 \mathrm{~m}$
D. $\quad 38.0 \mathrm{~m}$

$$
S=-h=v_{0} t-\frac{1}{2} g t^{2}
$$

Solve for $h$

$$
\begin{gathered}
h=\frac{1}{2} g t^{2}-v_{0} t=\frac{1}{2}\left(9.80 \mathrm{~m} / s^{2}\right)(4.11 \mathrm{~s})^{2}-(4.35 \mathrm{~m} / \mathrm{s})(4.11 \mathrm{~s})=82.77 \mathrm{~m}-17.88 \mathrm{~m} \\
h=82.77 \mathrm{~m}-17.88 \mathrm{~m}=64.9 \mathrm{~m}
\end{gathered}
$$

## So, the correct answer is B !

A drag racer has reached a speed of $151 . \mathrm{m} / \mathrm{s}$ when it begins to apply brakes to stop. If the brakes alone are used and provide a deceleration of 2 g or $19.6 \mathrm{~m} / \mathrm{s}^{2}$, how far would the drag racer travel before the vehicle stopped?
A.
3.85 m
C. 1160.m
B.
59.4 m
D.
582.m

$$
v_{f}^{2}=0=v_{0}^{2}-2 a S
$$

Solve for $S$

$$
S=\frac{v_{0}^{2}}{2 a}=\frac{(151 . \mathrm{m} / \mathrm{s})^{2}}{2\left(19.6 \mathrm{~m} / \mathrm{s}^{2}\right)}=\frac{2.28 \times 10^{4} \mathrm{~m}^{2} / \mathrm{s}^{2}}{39.2 \mathrm{~m} / \mathrm{s}^{2}}=581.7 \mathrm{~m}
$$

Note: The answer indicates why a parachute is added to slow the racecar down.
So, the correct answer is D !

| Dr. Donovan's Classes | $\frac{\text { Dr. Donovan's PH 220 }}{\text { Lecture Quiz \& Exam }}$ |
| :---: | :---: |
| Page | $\underline{\text { Solutions }}$ |

NMU Physics
Department Web Page
NMU Main Page
Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on February 2, 2024

