

Since speed is the slope of distance vs time, the portion of the plot with a negative slope is the correct answer. In this case the slope is negative in region C.

So, the correct answer is C !

A truck is moving with a speed of 7.32 m/_{S} when it begins to uniformly slow down. After a time of 14.3 s, the truck has travelled a distance of 71.3 m. What is the final speed of the truck at this point?

A.
$$17.3 \text{ m/}_{\text{S}}$$
 B. $9.97 \text{ m/}_{\text{S}}$ C. $12.3 \text{ m/}_{\text{S}}$ D. $2.65 \text{ m/}_{\text{S}}$

$$S=\frac{1}{2}(v_0+v_f)t$$

Solve for v_f

$$v_0 + v_f = \frac{2S}{t}$$

$$v_f = \frac{2S}{t} - v_0 = \frac{2(71.3 m)}{14.3 s} - 7.32 m/_s = 9.97 m/_s - 7.32 m/_s = 2.65 m/_s$$

So, the correct answer is D !

A bottle rocket is launched from the ground with an initial speed of 23.7 $\,^{\rm m}/_{\rm S}$ pointed straight up. What is the acceleration of the bottle rocket at a time of 1.71 s after launch? Ignore any effects caused by air resistance.

Α.	9.80 $m/_{s^2}$ (Down)	С.	$6.94 \text{ m/}_{\text{S}^2} (\overline{Up})$
В.	$0.00 \text{ m/}_{\text{S}^2} (\widehat{\text{Down}})$	D.	26.2 $^{\rm m}/_{\rm S^2}$ (Up)

Since the only force acting is gravity the object is in free fall so the acceleration is the acceleration due to gravity 9.80 m/s^2 (\widehat{Down})

So, the correct answer is A !

A hot air balloon with a gondola is rising with a constant speed of 4.35 m/_{S} . At some point a ballast weight is cut from the balloon gondola. The ballast weight has a mass of 20.0 kg. The weight strikes the ground 4.11 s after it is cut from the balloon gondola. How high above the ground was the weight cut from the balloon gondola? As usual ignore all effects of air resistance.

Α.	101.m	В.	64.9 m	C.	2.26 m	D.	38.0 m
Solve for $h = \frac{1}{2}$	-	$=\frac{1}{2}(9.80$			$p_0 t - \frac{1}{2}gt^2$ $+ (4.35 m/s)$	(4. 11 <i>s</i>) =	82.77 m – 17.88 m
h = 82.77 m - 17.88 m = 64.9 m							

So, the correct answer is B !

A drag racer has reached a speed of $151. \text{ }^{\text{m}}\text{/}_{\text{S}}$ when it begins to apply brakes to stop. If the brakes alone are used and provide a deceleration of 2g or 19.6 $\text{ }^{\text{m}}\text{/}_{\text{S}^2}$, how far would the drag racer travel before the vehicle stopped?

Α.	3.85 m	С.	1160. m
В.	59.4 m	D.	582. m

 $v_f^2 = \mathbf{0} = v_0^2 - 2aS$

Solve for S

$$S = \frac{v_0^2}{2a} = \frac{(151.\ m/s)^2}{2\left(19.\ 6\ m/s^2\right)} = \frac{2.\ 28\ x\ 10^4\ m^2/s^2}{39.\ 2\ m/s^2} = 581.\ 7\ m$$

Note: The answer indicates why a parachute is added to slow the racecar down.

So, the correct answer is D !

<u>Dr. Donovan's Classes</u> <u>Page</u>	<u>Dr. Donovan's PH 220</u> <u>Lecture Quiz & Exam</u> <u>Solutions</u>	
<u>NMU Physics</u> Department Web Page	NMU Main Page	

Please send any comments or questions about this page to <u>ddonovan@nmu.edu</u> *This page last updated on February 2, 2024*