Name
Solution

A crate has a mass of 7.11 kg and is being pulled on by a force $\mathrm{P}=64.9 \mathrm{~N} @ 38.0^{\circ}$ above horizontal as shown on the right. Assume there is no friction between the crate and the horizontal surface. What is the normal force the floor is exerting on the crate?

A. $\quad 69.7 \mathrm{~N}$
B.
18.6 N
C. $\quad 40.0 \mathrm{~N}$
D. $\quad 29.7 \mathrm{~N}$

Free Body Diagram and Sum of Forces Equations:

$$
\begin{aligned}
& \sum F_{x}=P_{x}=P \cos (\theta)=m a_{x} \\
& \sum F_{y}=N+P_{y}-m g=m a_{y}=0 \\
& N=m g-P_{y}=m g-P \sin (\theta) \\
& N=m g-P \sin (\theta)=(7.11 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)-(64.9 \mathrm{~N}) \sin \left(38.0^{\circ}\right) \\
& N=69.7 N-40.0 N=29.7 N
\end{aligned}
$$

So, the correct answer is D !

You take a small ball which has a mass of 0.135 kg and you want to throw the ball straight up with a speed of $27.4 \mathrm{~m} / \mathrm{s}$. Your hand moves a distance of 0.125 m in taking the ball at rest and providing the speed when it leaves your hand. What is the average force your hand exerts on the ball?
A. $\quad 37.0 . \mathrm{N}$
B. $\quad 811 . \mathrm{N}$
C. 405.N
D. $\quad 14.8 \mathrm{~N}$
$F_{\text {ave }}=m a$

Find acceleration from

$$
\begin{gathered}
v_{f}^{2}=v_{0}^{2}+2 a S=2 a S \\
a=\frac{v_{f}^{2}}{2 S}
\end{gathered}
$$

$$
F_{a v e}=m \frac{v_{f}^{2}}{2 S}=(0.135 \mathrm{~kg}) \frac{(27.4 \mathrm{~m} / \mathrm{s})^{2}}{2(0.125 \mathrm{~m})}=(0.135 \mathrm{~kg}) \frac{750.76 \mathrm{~m}^{2} / \mathrm{s}^{2}}{0.250 \mathrm{~m}}=405 . \mathrm{N}
$$

So, the correct answer is C !

As shown on the left three masses are connected by two ropes (T_{2} and T_{3}) with a third rope $\left(\mathrm{T}_{1}\right)$ connected to only the top mass. The masses are $\mathrm{m}_{\mathrm{A}}=27.2 \mathrm{~kg}, \mathrm{~m}_{\mathrm{B}}=17.3 \mathrm{~kg}$, and $\mathrm{m}_{\mathrm{C}}=33.1 \mathrm{~kg}$. The masses are all at rest. What is the tension in rope T_{2} ?
A. $\quad 760 . \mathrm{N}$
B. \quad 494. N
C. \quad 170. N
D. $\quad 324 . \mathrm{N}$

Free Body Diagrams

$$
\begin{gathered}
\sum F_{C}=T_{3}-m_{C} g=m_{C} a_{C}=0 \\
T_{3}=m_{C} g \\
\sum F_{B}=T_{2}-T_{3}-m_{B} g=m_{B} a_{B}=0 \\
T_{2}=T_{3}+m_{B} g=m_{C} g+m_{B} g=\left(m_{C}+m_{B}\right) g
\end{gathered}
$$

$$
T_{2}=(17.3 \mathrm{~kg}+33.1 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=(50.4 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)=494 . \mathrm{N}
$$

So, the correct answer is B !

A constant force $\overrightarrow{\mathrm{F}}=56.6 \mathrm{~N} \widehat{(\mathrm{l})}$ causes an object to have a displacement which follows the relationship $\vec{x}=\left(2.30 t^{2}-6.76 t+11.8\right) \mathrm{m} \widehat{(1)}$. What is the mass of the object?
A.
12.3 kg
B. $\quad 24.6 \mathrm{~kg}$
C. $\quad 5.78 \mathrm{~kg}$
D. $\quad 7.71 \mathrm{~kg}$

Newton's second law tells us that $m=\frac{\vec{F}}{\vec{a}}$
We can find acceleration by differentiating x twice

$$
\begin{gathered}
v=\frac{d x}{d t}=\frac{d}{d t}\left(2.30 t^{2}-6.76 t+11.8\right)=4.60 t-6.76 \\
a=\frac{d v}{d t}=\frac{d}{d t}(4.60 t-6.76)=4.60 \\
m=\frac{\vec{F}}{\vec{a}}=\frac{56.6 \mathrm{~N} \widehat{(\mathrm{l})}}{4.60 \mathrm{~m} / \mathrm{s}^{2} \widehat{(l)}}=12.3 \mathrm{~kg}
\end{gathered}
$$

So, the correct answer is A!

During a flood, a rescue helicopter is pulling a person to safety. The person has a mass of 73.2 kg . The maximum safe tension the rescue cable can withstand before it might break is 871 . N. What is the greatest acceleration that the person can be pulled to safety with?
A. $\quad 2.10 \mathrm{~m} / \mathrm{s}^{2}$
B. $\quad 11.9 \mathrm{~m} / \mathrm{s}^{2}$
C. $\quad 9.80 \mathrm{~m} / \mathrm{s}^{2}$
D. $\quad 0.00 \mathrm{~m} / \mathrm{s}^{2}$

Free Body Diagram and Sum of Forces Equations:

$$
\begin{array}{cc}
\sum F=T-m g=m a & \bigwedge^{T} \\
a=\frac{T}{m}-g=\frac{871 . N}{73.2 \mathrm{~kg}}-9.80 \mathrm{~m} / \mathrm{s}^{2} & \square \\
a=11.90 \mathrm{~m} / \mathrm{s}^{2}-9.80 \mathrm{~m} / \mathrm{s}^{2}=2.10 \mathrm{~m} / \mathrm{s}^{2} & \mathrm{mg}
\end{array}
$$

So, the correct answer is A!

$\underline{\text { Dr. Donovan's Classes }}$	Pr. Donovan's PH 220 Lecture Quiz \& Exam NMU Physics
Department Web Page	NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on February 23, 2024

