Name
Solution
An object in space has a mass of 7.87 kg is moving along a circular path of radius 17.9 m . Its speed is described by $\mathrm{v}=\left(-6.73+4.21 \mathrm{t}-1.31 \mathrm{t}^{2}\right) \mathrm{m} / \mathrm{s}$. What is the magnitude of the object's tangential acceleration at a time of $t=3.00 \mathrm{~s}$?
A. $\quad 3.65 \mathrm{~m} / \mathrm{s}^{2}$
B. $\quad 5.89 \mathrm{~m} / \mathrm{s}^{2}$
C. $\quad 1.94 \mathrm{~m} / \mathrm{s}^{2}$
D. $\quad 12.1 \mathrm{~m} / \mathrm{s}^{2}$

$$
a_{T}=\frac{d v}{d t}=\frac{d}{d t}\left(-6.73+4.21 t-1.31 t^{2}\right)=4.21-2.62 t
$$

At $t=3.00 s$

$$
a_{T}=4.21-2.62 t=4.21-2.62(3.00)=-3.65 \mathrm{~m} / \mathrm{s}^{2}
$$

So, the correct answer is A!

The mass of the Moon is $7.35 \times 10^{22} \mathrm{~kg}$. The radius of the Moon is $1.74 \times 10^{6} \mathrm{~m}$. The period of the Moon's rotation about its internal axis is $2.36 \times 10^{6} \mathrm{~s}$. At what distance from the center of the Moon would a satellite have to be so that it orbited the Moon remaining above the same spot on the Moon. This is the Moon's equivalent to a geostationary satellite orbiting the Earth.
A. $\quad 6.92 \times 10^{23} \mathrm{~m}$
B. $8.84 \times 10^{7} \mathrm{~m}$
C. $\quad 8.32 \times 10^{11} \mathrm{~m}$
D. $\quad 3.84 \times 10^{8} \mathrm{~m}$

$$
\begin{aligned}
& \sum F_{R}=\frac{G m_{M} m}{r^{2}}=m a_{c}=m \frac{v^{2}}{r}=\frac{m}{r}\left(\frac{2 \pi r}{T}\right)^{2}=\frac{4 \pi^{2} m}{T^{2}} r \\
& r^{3}=\frac{G m_{M}}{4 \pi^{2}} T^{2} \\
& r=\left[\frac{G m_{M}}{4 \pi^{2}} T^{2}\right]^{1 / 3}=\left[\frac{\left(6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}\right)\left(7.35 \times 10^{22} \mathrm{~kg}\right)}{4 \pi^{2}}\left(2.36 \times 10^{6} \mathrm{~s}\right)^{2}\right]^{1 / 3} \\
& r=\left[6.916 \times 10^{23} \mathrm{~m}^{3}\right]^{1 / 3}=8.84 \times 10^{7} \mathrm{~m}
\end{aligned}
$$

So, the correct answer is B !

A person has a mass ($m_{P}=67.0 \mathrm{~kg}$) is riding on a Ferris wheel which has a radius of 16.7 m and the wheel takes a time of 13.3 s . What is the apparent weight of the person as they rotate through the top of the wheel?
A. $\quad 657 . \mathrm{N}$
B.
906. N
C. \quad 407. N
D. \quad 577. N

At top of wheel:

$$
\sum F_{R}=m_{P} g-N=m_{P} a_{C}=m_{P} \frac{v^{2}}{R}=\frac{m_{P}}{R}\left(\frac{2 \pi R}{T}\right)^{2}=\frac{4 \pi^{2} m_{P} R}{T^{2}}
$$

Apparent Weight is normal force

$$
\begin{gathered}
N=m_{P} g-\frac{4 \pi^{2} m_{P} R}{T^{2}}=m_{P}\left(g-\frac{4 \pi^{2} R}{T^{2}}\right) \\
N=(67.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}-\frac{4 \pi^{2}(16.7 \mathrm{~m})}{(13.3 \mathrm{~s})^{2}}\right)=(67.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}-3.73 \mathrm{~m} / \mathrm{s}^{2}\right) \\
N=(67.0 \mathrm{~kg})\left(6.07 \mathrm{~m} / \mathrm{s}^{2}\right)=407 . \mathrm{N}
\end{gathered}
$$

So, the correct answer is C !

A Ford Mustang with a driver in it has a combined mass of $1470 . \mathrm{kg}$ is driving over a circular hill which has a radius of 45.0 m . At what speed will the car leave the road surface?
A. $\quad 14.8 \mathrm{~m} / \mathrm{s}$
B. $\quad 29.7 \mathrm{~m} / \mathrm{s}$
C. $\quad 65.7 \mathrm{~m} / \mathrm{s}$
D. $\quad 21.0 \mathrm{~m} / \mathrm{s}$

$$
\sum F_{R}=m g-N=m a_{C}=m \frac{v^{2}}{R}
$$

Car leaves the road if $\mathbf{N}=>\mathbf{0}$.

$$
\begin{gathered}
m g=m \frac{v^{2}}{R} \\
v^{2}=R g \\
v=\sqrt{R g}=\sqrt{(45.0 m)\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}=\sqrt{441 . \mathrm{m}^{2} / \mathrm{s}^{2}}=21.0 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

So, the correct answer is D !

The International Space Station orbits about $6.77 \times 10^{6} \mathrm{~m}$. The mass of the Earth is $5.98 \times 10^{24} \mathrm{~kg}$. What would they find the acceleration of gravity due to the Earth on the space station?
A.
$8.70 \mathrm{~m} / \mathrm{s}^{2}$
C.
$5.11 \mathrm{~m} / \mathrm{s}^{2}$
B.
$5.89 \mathrm{~m} / \mathrm{s}^{2}$
D. $\quad 9.80 \mathrm{~m} / \mathrm{s}^{2}$

$$
g=G \frac{m_{E}}{r^{2}}=\left(6.67 \times 10^{-11} N^{m^{2}} / \mathrm{kg}^{2}\right) \frac{\left(5.98 \times 10^{24} \mathrm{~kg}\right)}{\left(6.77 \times 10^{6} \mathrm{~m}\right)^{2}}=8.70 \mathrm{~m} / \mathrm{s}^{2}
$$

So, the correct answer is A!

Dr. Donovan's Classes	
Page	$\frac{\text { Dr. Donovan's PH 220 }}{\text { Lecture Quiz \& Exam }}$ Solutions
NMU Physics Department Web Page	NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on March 15, 2024

