

A hypothetical conservative force is found to have a potential energy function given by:

$$
U(x)=4 x^{3}-2 x+6
$$

$U(x)$ will be in units of Joules if x is in units of meters. What is the magnitude and direction of the conservative force at $\mathrm{x}=2.00 \mathrm{~m}$?
A.

$$
+34 \mathrm{~N} \widehat{(\mathrm{l})}
$$

C. $\quad-34 \mathrm{~N} \widehat{(1)}$
B.

$$
\begin{gathered}
+46 \mathrm{~N} \widehat{(\mathrm{l})} \\
\vec{F}=-\vec{\nabla} U(x)=-\frac{\partial}{\partial x} U(x) \widehat{(\imath)}-\frac{\partial}{\partial y} U(x) \widehat{(J)}-\frac{\partial}{\partial z} U(x) \widehat{(k)} \widehat{(1)}
\end{gathered}
$$

Since there is no y or \mathbf{z} dependence this reduces to

$$
\vec{F}=-\frac{\partial}{\partial x} U(x) \widehat{(l)}=-\frac{\partial}{\partial x}\left(4 x^{3}-2 x+6\right) \widehat{(l)}=-\left(12 x^{2}-2\right) \widehat{(l)}
$$

Find at $x=2.00 m$

$$
\vec{F}=-\left(12 x^{2}-2\right) \widehat{(l)}=-\left(12(2)^{2}-2\right) \widehat{(l)}=-(48-2) \widehat{(c)}=-(46) \widehat{(c)}=-46 \widehat{(l)}
$$

Since units for U were Joules and x were meters, F is in Newtons
So, the correct answer is D !

A spring has a spring constant of $\mathrm{k}=22.2 \mathrm{~N} / \mathrm{m}$. It is initially compressed a distance of 1.80 m . What is the change in the potential energy stored in the spring if the spring is relaxed and now is only compressed a distance of 0.90 m ?
A. $\quad+27.0 \mathrm{~J}$
B. $\quad+10.0 \mathrm{~J}$
C. $\quad-27.0 \mathrm{~J}$
D. $\quad-10.0 \mathrm{~J}$

$$
\begin{gathered}
\Delta U_{\text {Spring }}=U_{\text {Spring final }}-U_{\text {Spring initial }}=\frac{1}{2} k x_{f}^{2}-\frac{1}{2} k x_{0}^{2}=\frac{1}{2} k\left(x_{f}^{2}-x_{0}^{2}\right) \\
\Delta U_{\text {Spring }}=\frac{1}{2}(22.2 \mathrm{~N} / m)\left((0.90 \mathrm{~m})^{2}-(1.80 \mathrm{~m})^{2}\right)=11.1 \mathrm{~N} / \mathrm{m}\left(0.81 \mathrm{~m}^{2}-3.24 \mathrm{~m}^{2}\right) \\
\Delta U_{\text {Spring }}=11.1 \mathrm{~N} / \mathrm{m}\left(-2.43 \mathrm{~m}^{2}\right)=-26.97 \mathrm{~J}
\end{gathered}
$$

So, the correct answer is C !

A mass ($\mathrm{m}=1.31 \mathrm{~kg}$) is traveling through space with an initial velocity of $\left(\overrightarrow{\mathrm{v}_{0}}=9.84 \mathrm{~m} / \mathrm{s} \overrightarrow{(+\mathrm{k})}\right)$. It encounters an unknown force $\overrightarrow{\mathrm{F}}=13.0 \mathrm{~N} \widehat{(-\mathrm{k})}$ which acts on the mass while it makes a displacement of $\vec{S}=4.33 \mathrm{~m} \widehat{(+\mathrm{k})}$. What is the final velocity of the mass after it has been displaced by that distance?
A.
$3.30 \mathrm{~m} / \mathrm{s} \widehat{(+\mathbf{k})}$
C.
$13.5 \mathrm{~m} / \mathrm{s} \widehat{(-\mathrm{k})}$
B.
$3.30 \mathrm{~m} / \mathrm{s} \widehat{(-\mathrm{k})}$
D. $\quad 13.5 \mathrm{~m} / \mathrm{s} \widehat{(+\mathrm{k})}$

$$
W=\Delta K=\frac{1}{2} m\left(v_{f}^{2}-v_{0}^{2}\right)=\vec{F} \cdot \vec{S}=(13.0 \mathrm{~N} \widehat{(-k)}) \cdot(4.33 \mathrm{~m}(\widehat{\mathrm{k}}))
$$

$$
\frac{1}{2} m\left(v_{f}^{2}-v_{0}^{2}\right)=(13.0 \mathrm{~N})(4.33 \mathrm{~m}) \widehat{(-k)} \cdot \widehat{(\mathrm{k})}=(13.0 \mathrm{~N})(4.33 \mathrm{~m})(-1)
$$

$$
v_{f}^{2}=v_{0}^{2}-\frac{2(13.0 \mathrm{~N})(4.33 \mathrm{~m})}{m}=(9.84 \mathrm{~m} / \mathrm{s})^{2}-\frac{2(13.0 \mathrm{~N})(4.33 \mathrm{~m})}{1.31 \mathrm{~kg}}
$$

$$
v_{f}^{2}=96.83 \mathrm{~m}^{2} /_{s^{2}}-85.94 \mathrm{~m}^{2} /_{s^{2}}=10.89 \mathrm{~m}^{2} /_{s^{2}}
$$

$$
v_{f}=\sqrt{10.89 \mathrm{~m}^{2} / s^{2}}=3.30 \mathrm{~m} / \mathrm{s}(\widehat{(k)}
$$

So, the correct answer is A!

A crate ($\mathrm{m}=25.0 \mathrm{~kg}$) is dropped at rest from a plane at a height of $(\mathrm{h}=1500 . \mathrm{m})$. If we assumed no air resistance the crate would strike the ground with a speed of about $171.5 \mathrm{~m} / \mathrm{s}$. This likely breaks up anything within the crate. If we attach a parachute and assume air resistance is possible, the crate could land with a speed of $\left(\mathrm{v}_{\mathrm{f}}=5.00 \mathrm{~m} / \mathrm{s}\right)$. How much work must air resistance do for this to happen?
A.

$$
-3.12 \times 10^{2} \mathrm{~J}
$$

C. $\quad+3.12 \times 10^{2} \mathrm{~J}$
B.

$$
-3.67 \times 10^{5} \mathrm{~J}
$$

D. $\quad+3.67 \times 10^{5} \mathrm{~J}$
$\sum W_{n o n ~ C o n s}=W_{\text {air }}=\Delta E=\Delta K+\Delta U=\frac{1}{2} m\left(v_{f}^{2}-v_{0}^{2}\right)+(0-m g h)$

$$
W_{a i r}=\frac{1}{2} m\left(v_{f}^{2}-0\right)+(-m g h)=\frac{1}{2} m v_{f}^{2}-m g h
$$

$$
W_{a i r}=\frac{1}{2}(25.0 \mathrm{~kg})(5.00 \mathrm{~m} / \mathrm{s})^{2}-(25.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)(1500 . \mathrm{m})
$$

$$
W_{a i r}=312.5 \mathrm{~J}-3.68 \times 10^{5} \mathrm{~J}=-3.67 \times 10^{5} \mathrm{~J}
$$

So, the correct answer is B !

A mass ($\mathrm{m}=3.34 \mathrm{~kg}$) is released from rest and allowed to slide down a plane inclined by an angle ($\theta=18.0^{\circ}$) with the horizontal as shown above. The mass slides a distance ($\mathrm{S}=4.33 \mathrm{~m}$). There is a coefficient of kinetic friction between the mass and the inclined plane of ($\mu_{\mathrm{k}}=0.231$). After the mass has slid the distance S, the speed of the mass is found to be ($\mathrm{v}_{\mathrm{f}}=2.75 \mathrm{~m} / \mathrm{s}$). How much work was done by the normal force as the mass slid down the plane?
A.
$+43.8 \mathrm{~J}$
C.
$-31.1 \mathrm{~J}$
B.
+0.00 J
D. -142. J

Free Body Diagram is on right. N is perpendicular to displacement.

Remember Perpendicular forces do no work!
So, the correct answer is B !

Dr. Donovan's Classes Page

Dr. Donovan's PH 220
 Lecture Quiz \& Exam
 Solutions

NMU Physics
Department Web Page
NMU Main Page
Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on March 29, 2024

