A "See-Saw" is made up of an unbreakable massless board that is 10.0 m long. A child who has a mass $\left(\mathrm{m}_{\mathrm{C}}=42.0 \mathrm{~kg}\right)$ is located at the distance ($\mathrm{x}_{\mathrm{C}}=2.50 \mathrm{~m}$) from the left end of the board. A man is located at a distance $\left(\mathrm{x}_{\mathrm{M}}=8.75 \mathrm{~m}\right)$ from the left end of the board. The board is balanced when supported at a distance ($\mathrm{x}_{\mathrm{F}}=6.47 \mathrm{~m}$) from the left end of the board. What is the mass of the man?
A. $\quad 109 . \mathrm{kg}$
B. $\quad 147 . \mathrm{kg}$
C. $\quad 24.1 \mathrm{~kg}$
D. $\quad 73.1 \mathrm{~kg}$

$$
\begin{gathered}
x_{C M}=\frac{m_{C} x_{C}+m_{M} x_{M}}{m_{C}+m_{M}}=x_{F} \\
\left(m_{C}+m_{M}\right) x_{F}=m_{C} x_{C}+m_{M} x_{M}=m_{C} x_{F}+m_{M} x_{F} \\
m_{M} x_{F}-m_{M} x_{M}=m_{M}\left(x_{F}-x_{M}\right)=m_{C} x_{C}-m_{C} x_{F}=m_{C}\left(x_{C}-x_{F}\right) \\
m_{M}=m_{C} \frac{\left(x_{C}-x_{F}\right)}{\left(x_{F}-x_{M}\right)}=(42.0 \mathrm{~kg}) \frac{(2.50 \mathrm{~m}-6.47 \mathrm{~m})}{(6.47 \mathrm{~m}-8.75 \mathrm{~m})}=(42.0 \mathrm{~kg}) \frac{(-3.97 \mathrm{~m})}{(-2.28 \mathrm{~m})} \\
m_{M}=(42.0 \mathrm{~kg}) \frac{(-3.97 \mathrm{~m})}{(-2.28 \mathrm{~m})}=(42.0 \mathrm{~kg})(1.741)=73.1 \mathrm{~kg}
\end{gathered}
$$

So, the correct answer is D !
The Sun is located about $1.50 \times 10^{11} \mathrm{~m}$ from Earth. The diameter of the Sun is about $1.39 \times 10^{9} \mathrm{~m}$. What is the angle the Sun subtends in our eyes?
A.
$2.09 \times 10^{20} \mathrm{Rad}$
C. $\quad 9.27 \times 10^{-3} \mathrm{Rad}$
B.

$$
4.80 \times 10^{-21} \mathrm{Rad}
$$

D.
$1.08 \times 10^{2} \mathrm{Rad}$

$$
\theta=\frac{S}{R}=\frac{1.39 \times 10^{9} \mathrm{~m}}{1.50 \times 10^{11} \mathrm{~m}}=9.27 \times 10^{-3} \mathrm{Rad}
$$

So, the correct answer is C !

A propeller on a ship is rotating with an angular velocity of $4.73 \mathrm{Rad} / \mathrm{s}(\widehat{\mathrm{CCW}})$. An angular acceleration of $2.01 \mathrm{Rad} / \mathrm{s}^{2}(\widehat{\mathrm{CW})}$ is applied to the propeller for a time of 6.50 s . What is the angular displacement the propeller undergoes during this time?
A.
73.2 $\operatorname{Rad}(\widehat{\mathrm{CCW}})$
C. $\quad 30.7 \operatorname{Rad}(\widehat{\mathrm{CCW}})$
B.
11.7 Rad $(\widehat{\mathbf{C W})}$
D. \quad 42.5 $\operatorname{Rad}(\overline{\mathrm{CW})}$

$$
\begin{gathered}
\overrightarrow{\boldsymbol{\theta}}=\overrightarrow{\omega_{0}} t+\frac{1}{2} \vec{\alpha} t^{2}=(4.73 \mathrm{Rad} / \mathrm{s}(\widehat{C C W}))(6.50 s)+\frac{1}{2}\left(2.01 \mathrm{Rad} / \mathrm{s}^{2}(\widehat{C W})\right)(6.50 s)^{2} \\
\overrightarrow{\boldsymbol{\theta}}=30.75 \mathrm{Rad}(\widehat{C C W})+42.46 \operatorname{Rad}(\overrightarrow{C W})=-30.75 \operatorname{Rad}(\widehat{C W})+42.46 \operatorname{Rad}(\overrightarrow{C W}) \\
\overrightarrow{\boldsymbol{\theta}}=(-30.75 \mathrm{Rad}+42.46 \mathrm{Rad})(\overrightarrow{C W})=11.7 \operatorname{Rad}(\overrightarrow{C W})
\end{gathered}
$$

So, the correct answer is B !

An object is in an orbit about a fixed point and has an angular velocity given by:

$$
\omega=\left(12 \mathrm{t}^{2}-7\right) \mathrm{Rad} / \mathrm{s}
$$

It is known at time $t=0.00 \mathrm{~s}, \theta=10.0$ Rad. What is the magnitude of the angular acceleration at $\mathrm{t}=1.71 \mathrm{~s}$?
A.
41. $0 \mathrm{Rad} / \mathrm{s}^{2}$
C.
28.1 Rad/ s^{2}
B.

$$
13.5 \mathrm{Rad} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& \text { D. } \\
& \left.t^{2}-7\right)=24 t
\end{aligned}
$$

$$
\alpha=\frac{d \omega}{d t}=\frac{d}{d t}\left(12 t^{2}-7\right)=24 t
$$

At $t=1.71 \mathrm{~s}$

$$
\alpha=24 t=\left(24 \mathrm{Rad} / \mathrm{s}^{3}\right)(1.71 \mathrm{~s})=41.0 \mathrm{Rad} / \mathrm{s}^{2}
$$

So, the correct answer is A!

A car is traveling along a straight section of road with a linear velocity of $16.7 \mathrm{~m} / \mathrm{s}$. The four tires have each have a radius of 0.350 m . What is the average angular speed of each tire as the car is moving down the road?
A. $\quad 23.4 \mathrm{Rad} / \mathrm{s}$
B. $5.85 \mathrm{Rad} / \mathrm{s}$
C. $\quad 11.9 \mathrm{Rad} / \mathrm{s}$
D. $\quad 47.7 \mathrm{Rad} / \mathrm{s}$

$$
\omega=\frac{v}{R}=\frac{16.7 \mathrm{~m} / \mathrm{s}}{0.350 \mathrm{~m}}=47.7 \mathrm{Rad} / \mathrm{s}
$$

So, the correct answer is D !

Dr. Donovan's Classes	$\frac{\text { Dr. Donovan's PH 220 }}{\text { Lecture Quiz \& Exam }}$ Page
NMU Physics Department Web Page	NMU Main Page

Please send any comments or questions about this page to ddonovan@nmu.edu This page last updated on April 19, 2024

