

An electric dipole is formed from two charges identical in magnitude but oppositely charged as shown in the diagram on the right. $Q_+ = -Q_- = +45.3$ mC. The charges are separated by a distance $d = 6.78 \times 10^{-3}$ m. The dipole is placed inside an electric field which is $\vec{E} = 9.12 \times 10^5 \text{ N/C}$ $\widehat{(+)}$. The angle indicated in the diagram is $\varphi = 27.0^{\circ}$. What is the magnitude and direction of the torque acting on the dipole due to the electric field?

$$
B. \hspace{3.1em} 2.49 \times 10^2
$$

$$
\left|\frac{Q_{-}}{P}\right|_{\mathcal{Q}_{+}}^{\theta}
$$

B. $1.27 \times 10^2 \text{ m N}$ (\widehat{CW})

Torque is $\vec{\tau} = \vec{p} \times \vec{E}$. The magnitude is $\tau = pE \sin(\theta) = QdE \sin(90.0^\circ + \varphi)$ Since the dipole **moment goes from negative charge towards positive charge. Electric fields make dipole moments align with electric fields, so the direction of the torque is counter-clockwise.**

$$
\tau = QdE \sin(90.0^\circ + \varphi)
$$

= (45.3 x 10⁻³C)(6.78 x 10⁻³ m)(9.12 x 10⁵ N/_C) sin(90.0° + 27.0°)

$$
\tau = 2.80 \times 10^2 \ m \ N \ sin(117.^\circ) = 2.49 \times 10^2 \ m \ N
$$

So, the correct answer is A !

Draw in the dipole moment vector \vec{p}

An electric dipole has a dipole moment of magnitude 1.98×10^{-8} C m. It is placed inside of a constant electric field of magnitude 3.81 x $10^7\;\rm N_{\bigodot}$. The dipole moment initially makes an angle of 166.° with the direction of the electric field. It is twisted to a final angle of 37.6° with the direction of the electric field. How much work did the electric field do rotating the dipole moment?

A.
$$
-0.278
$$
 J B. +1.33 J C. -1.33 J D. +0.278 J
\n
$$
W_{Field} = -\Delta U = U_f - U_0 = -(-pE\cos(\theta_f) - (-pE\cos(\theta_0))) = -pE(\cos(\theta_0) - \cos(\theta_f))
$$
\n
$$
W_{Field} = -(1.98 \times 10^{-8} C \text{ m})(3.81 \times 10^7 \text{ N}/C)(\cos(166.^\circ) - \cos(37.6^\circ))
$$
\n
$$
W_{Field} = -7.54 \times 10^{-1} J(-1.76) = +1.33 J
$$

So, the correct answer is B !

Shown on the left is a collection of charges and a surface that we wish to measure the net electric flux passing through it. The charges have the following values: $Q_1 = -49.0$ mC, $Q_2 = +27.0$ mC, $Q_3 = +51.0$ mC , $Q_4 = -99.0$ mC , and $Q_5 = +84.0$ mC. The charges Q_1 , Q_2 and Q_3 are inside the surface. Charges Q_4 and $Q₅$ are outside. What is the net electric flux passing through this surface area?

$$
+1.28 \times 10^{10} \text{ N}_{\text{C}} \text{ m}^2
$$

Gauss's Law tells us:

$$
\Phi_E = \int \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_0}
$$

 $Q_{enclosed} = Q_1 + Q_2 + Q_3 = -49.0$ mC + 27.0 mC + 51.0 mC = +29.0 mC

$$
\Phi_E = \frac{Q_{enclosed}}{\varepsilon_0} = \frac{+29.0 \times 10^{-3} C}{8.85 \times 10^{-12} C^2/_{Nm^2}} = +3.28 \times 10^9 \frac{N}{C} m^2
$$

So, the correct answer is D !

Consider a charge $Q = -37.5 \mu C$ as shown on the right. There are two potential Gaussian Spheres surrounding it. Sphere A has a radius $R_A = 4.98 \times 10^{-3} \text{ m}$. Sphere B has a radius $R_B = 7.32 \times 10^{-3}$ m. Total electric field flux through Sphere A is measured to be -4.24×10^6 $\,\mathrm{N}_{\big/ \text{C}}\text{m}^2$. What is the total electric field flux through Sphere B?

A.	$-1.96 \times 10^6 \text{ N/m}^2$	C.	$-9.16 \times 10^6 \text{ N/m}^2$
B.	$-4.24 \times 10^6 \text{ N/m}^2$	D.	$-6.23 \times 10^6 \text{ N/m}^2$

Since Gauss's Law tells us that Electric Field Flux is charge enclosed divided by permittivity of free space.

$$
\Phi_E = \int \vec{E} \cdot d\vec{A} = \frac{Q_{Enclosed}}{\varepsilon_0} = \frac{-37.5 \times 10^{-6} C}{8.85 \times 10^{-12} C^2/_{Nm^2}} = -4.24 \times 10^6 \frac{N}{C} m^2
$$

The size of the sphere does not matter. The flux only depends on the charge enclosed. So, the flux through Sphere B is

$$
-4.24\,x\,10^6\,\frac{N}{C}\,m^2
$$

So, the correct answer is B !

A nonconducting square plane of charge has side length of $(L = 3.67 m)$. The electric field at a distance ($d = 1.69 \times 10^{-2}$ m) above the center of the plane is found to have a strength $\rm 2.64 \, x \, 10^{11} \, \rm \, \rm \, N_{C}$ and the field points towards the plane of charge. What is the total charge on the plane?

A.
$$
-17.1 \text{ C}
$$
 C. -62.9 C

B. $+17.1 \text{ C}$ **D.** $+62.9 \text{ C}$

From Gauss's Law we know the electric field for a plane of charge is $E = \frac{\sigma}{2g}$ $\frac{6}{2\varepsilon_0} =$ Q $\frac{1}{2}$ $\frac{\partial^2 L^2}{\partial \epsilon_0} = \frac{Q}{2\epsilon_0}$ $2\varepsilon_0 L^2$

Solve for Charge

$$
Q = 2\varepsilon_0 L^2 E = 2\left(8.85 x 10^{-12} \frac{C^2}{Nm^2}\right) (3.67 m)^2 (2.64 x 10^{11} N/C) = 62.9 C
$$

Since the field points towards the plane, the charge must be negative!

$$
Q=-62.9 C
$$

So, the correct answer is C !

Please send any comments or questions about this page to ddonovan@nmu.edu *This page last updated on September 13, 2024*