	Quiz Average	6.0	Quiz H	Quiz High Score 8.0	
PH 221	Quiz # 03	Quiz # 03 (10 pts)		Soluti	on

A charge ($Q_A = -56.9 \ \mu$ C) is located a distance (d = 3.45 x 10⁻⁴ m) away from a second charge ($Q_B = +23.9 \ \mu$ C). What is the electrical potential energy between these two charges?

A. $+3.54 \ge 10^4$ J **B.** $-1.07 \ge 10^8$ J **C.** $+1.07 \ge 10^8$ J **D.** $-3.54 \ge 10^4$ J

$$U_{el} = \frac{Q_A Q_B}{4\pi\varepsilon_0 d} = \frac{(-56.9 \, x \, 10^{-6} \, C)(+23.9 \, x \, 10^{-6} \, C)}{4\pi \left(8.85 \, x \, 10^{-12} \, \frac{C^2}{Nm^2}\right)(3.45 \, x \, 10^{-4} \, m)} = \frac{-1.360 \, x \, 10^{-9} \, C^2}{3.837 \, x \, 10^{-14} \, \frac{C^2}{J}}$$

$$U_{el} = -3.54 \ x \ 10^4 \ J$$

So, the correct answer is D !

At a point in space the electric potential is found to be $(V_1 = -97.5 \text{ V})$. While at another point in space the electric potential is $(V_2 = +43.1 \text{ V})$. What is the work done by the electric field if an object with a charge $(Q_A = +7.23 \text{ C})$ is moved from V_1 to V_2 ?

A. +393.3 J B. +1017. J C. -1017. J D. -393.3 J $W_{field} = -\Delta U = -Q_A \Delta V = -Q_A (V_2 - V_1) = -(+7.23 C)(+43.1 V - (-97.5 V))$ $W_{field} = -(+7.23 C)(+140.6 V) = -1016.5 J = -1017. J$

So, the correct answer is C !

As shown on the left, two charges are on a line $(d_{AB} = 4.00 \text{ x } 10^{-3} \text{ m})$. Charge $(Q_A = +5.00 \text{ µC})$ is at the top and Charge $(Q_B = -3.00 \text{ x } 10^{-3} \text{ m})$. A point P is located a distance $(d_{BP} = 3.00 \text{ x } 10^{-3} \text{ m})$ to the right of Charge Q_B . What is the total electric potential (V_P) found at point P?

A. $+2.25 \ge 10^6$ V **B. 0.00 V C.** $+1.80 \ge 10^7$ V **D.** $-1.20 \ge 10^9$ V

$$V_P = V_{PA} + V_{PB} = \frac{Q_A}{4\pi\varepsilon_0 d_{AP}} + \frac{Q_B}{4\pi\varepsilon_0 d_{BP}} = \frac{Q_A}{4\pi\varepsilon_0 \sqrt{d_{AB}^2 + d_{BP}^2}} + \frac{Q_B}{4\pi\varepsilon_0 d_{BP}}$$

$$V_{P} = \frac{+5.00 \ x \ 10^{-6} \ C}{4\pi \left(8.85 \ x \ 10^{-12} \ C^{2} / Nm^{2}\right) \left(\sqrt{(4.00 \ x \ 10^{-3} \ m)^{2} + (3.00 \ x \ 10^{-3} \ m)^{2}}\right)} \\ + \frac{-3.00 \ x \ 10^{-6} \ C}{4\pi \left(8.85 \ x \ 10^{-12} \ C^{2} / Nm^{2}\right) (3.00 \ x \ 10^{-3} \ m)}} \\ V_{P} = +8.99 \ x \ 10^{6} \ V + (-8.99 \ x \ 10^{6} \ V) = 0.00 \ V$$

So, the correct answer is B !

An external force does work ($W_{ext} = +6.26 \times 10^{-4} \text{ J}$) on a charge ($Q = +5.87 \mu$ C) which is initially at rest ($K_A = 0.00 \text{ J}$)at point A. The work brings the charge to point B where the charge now has a kinetic energy ($K_B = +1.43 \times 10^{-3} \text{ J}$). What is the change in potential going from point A to point B?

$$W_{ext} = \Delta E = \Delta U + \Delta K = Q \Delta V + \Delta K$$

$$\Delta V = \frac{W_{ext} - \Delta K}{Q} = \frac{+6.26 \ x \ 10^{-4} \ J - (+1.43 \ x \ 10^{-3} \ J)}{+5.87 \ x \ 10^{-6} \ C} = \frac{-8.04 \ x \ 10^{-4} \ J}{+5.87 \ x \ 10^{-6} \ C} = -137. V$$

So, the correct answer is A !

Two conducting plates are shown on the right. The distance between the two plates is given as $d=7.16 \ x \ 10^{-3} \ m$. The electric field is found to be $\overrightarrow{E_0}=5.61 \ x \ 10^4 \ N/_C \ \widehat{(-1)}$. What is the change in voltage going from the left plate to the right plate?

 $-4.02 \times 10^2 \text{ V}$

 $+4.02 \times 10^2 V$

A.
$$-7.84 \ge 10^6 \text{ V}$$
 C. $+7.84 \ge 10^6 \text{ V}$

Β.

3.

$$\boldsymbol{E} = -\frac{\Delta \boldsymbol{V}}{\Delta \boldsymbol{d}}$$

D.

Solve for the change in voltage

$$\Delta V = -E_0 d = -(5.61 \times 10^4 \ N/c)(7.16 \times 10^{-3} m) = -401.7 V$$

This implies that going in the direction of the Electric field (i.e. from right to left as indicated in picture, the change in voltage is -402. *V*, but question is going from left to right, so actual answer is

V = +402.V

So, the correct answer is D !

Dr. Donovon's Classos	Dr. Donovan's PH 221	
Dr. Donovan's classes	Lecture Quiz & Exam Solutions	
Page		

NMU Physics Department Web Page

NMU Main Page

Please send any comments or questions about this page to <u>ddonovan@nmu.edu</u> *This page last updated on September 20, 2024*