Projectile Motion

A. Finding the muzzle speed v_{0}

The speed of the projectile as it leaves the gun can be found by firing it horizontally from a table, and measuring the horizontal range Ro. On the diagram, the y axis starts at the initial position of the projectile, and points (increases) downwards. There are two steps needed:

1. Find the flight time for the projectile by considering the vertical motion
2. Use the flight time to calculate the horizontal distance It is important to understand that the vertical motion is constant-acceleration motion, and the horizontal motion is constant-velocity motion (with zero acceleration).

A.1. Finding the flight time from the vertical motion

The five variables for the vertical motion are:

$$
\begin{aligned}
& y=h \\
& a_{y}=g \\
& v_{0 y}=0 \mathrm{~m} / \mathrm{s} \\
& v_{y}=\text { don't know, don't care } \\
& t=\text { find this one }
\end{aligned}
$$

where $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$, and h is the height of the projectile above the floor, and both are positive.

The equation to use in this case is

$$
y=v_{0 y} t+\frac{1}{2} a_{y} t^{2}
$$

In the space below, solve this for t and give the equation in terms of g and h :

You should get:

$$
t= \pm \sqrt{\frac{2 h}{g}}
$$

The negative sign refers to a time interval preceding the start of the motion, so is not relevant here (what time interval would that be?).

A.2. Finding the muzzle speed v_{0} from the horizontally-fired range \boldsymbol{R}_{0} :

For projectile motion, the horizontal component of the velocity ($v_{0 x}$) remains constant. This means that the x coordinate of the projectile increases with time just like the position of an object moving with constant velocity. So, the horizontal coordinate x is related to the time t by

$$
x=v_{o x} t
$$

When the gun is fired horizontally, there is no vertical component to the velocity of the projectile leaving the "barrel". So, $v_{0 x}=v_{0}$. Let the horizontal distance from the initial to the final positions be Ro. Then the muzzle velocity comes from the above equation:

$$
v_{0}=\frac{R_{0}}{t} .
$$

The expression for t found in the previous part can be substituted to get an equation for the muzzle speed vo in terms of the horizontal range R_{0}, the vertical drop h, and the acceleration ay. Do the algebra here (no numbers, just symbols):

You should have

$$
v_{0}=R_{0} \sqrt{\frac{g}{2 h}} .
$$

The actual muzzle speed of your "gun" can now be found using this equation. You will need to get a measurement of the range when the gun is fired horizontally (R_{0}).

A.3. Measuring the horizontally-fired range, \mathbf{R}_{0}, and finding v_{0} from it:

Set the gun to fire horizontally from a table. Make sure there is plenty of space for the projectile to land without hitting anyone. Have one person "field" the projectile each time it is fired, so that it doesn't crash into the wall. After a few test shots, you should have an approximate landing area. Lightly tape a stack of paper, one sheet for each person, to the floor at this location so that you get six shots landing centrally on the page. The projectile will make an indentation where it lands, and it will be deep enough so that you can stack two or three target pages and still get a mark on all of them.

1. Before you remove the target from the floor, carefully measure the horizontal distance from the firing point to the nearest edge of the target page. Label this edge: "Near edge" and write the measured distance next to it: "dist from gun = ..."
2. Now remove the target pages
3. On your target page, carefully circle each landing point.
4. For each impact point, use a ruler to draw a line from the "near" edge to the point, and measure its length. Neatly record this data on the target page next to the line.
5. In a space on your target page, calculate the average distance of the impacts from the near edge of the page. Show your work, with units. Give the answer clearly, and also record it here:
average distance from near edge of
target page to impact points:
6. Find the best value for the horizontally-fired range of the projectile (for the given table height) by adding:
$R_{0}=($ distance from the firing point to the near edge of the target page $)+$ (average distance from near edge of target page to impact point)

$$
\mathrm{R}_{0}=
$$

\qquad

A.4. Find the muzzle speed

To calculate the muzzle speed, the launch height above the floor is needed. Measure it accurately. Should the measurement be from the floor to the center of the ball, or the top, or the bottom? Check one, and fill in the result.

Use the expression from part A. 2 to calculate the muzzle speed v_{0} of the projectile as it leaves the "gun". Show your calculation here, including the numbers substituted:

$$
V_{0}=
$$

\qquad

B. Predicting and testing the angle-fired range R_{1}

In this part, the idea is to use the muzzle velocity v_{0} just determined to predict where the projectile will land when it is fired at a given angle. The diagram illustrates the situation, where launch angle θ will be set by the lab instructor. Note that this time we have chosen the origin of the vertical y axis on the floor and made it point (increase) upwards. The horizontal x axis has origin at the launch point and increases horizontally in the direction of fire.

Two steps are needed to calculate the predicted range:

1. Find the flight time t_{1} ("hang time") by considering the vertical motion
2. Use the flight time to calculate the horizontal displacement R_{1}

Note: Since the flight time will be different from part A, we are calling it t_{1}.

B.1. Find the flight time t_{1} for the angle-fired projectile

The five variables for the vertical motion are:

```
\(y=-h_{1} \quad\) (note: negative)
\(a_{y}=-g \quad\) (note: negative)
\(v_{0 y}=+v_{0} \sin \theta\)
\(v_{y}=\) don't know
\(t=\) we want this; call it \(t_{1}\)
where \(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\), and \(h_{1}\) is the height of the launch above the floor.
```

One way to solve for t_{1} is to first find the final velocity v_{y} and then use that to get t_{1}. Let's follow that method. First, write down the equation that involves v_{y} and the other known quantities (symbols only):

Solve for v_{y} and substitute h_{1} and g (symbols only):

Your algebra should lead to: $\quad v_{y}= \pm \sqrt{v_{0}^{2} \sin ^{2} \theta+2 g h_{1}}$
Only one of the two signs in the above equation is acceptable for the final vertical velocity at the instant just before the projectile lands on the floor. Which one? Why?

Measure h_{1}, and use it to calculate the final vertical velocity of your projectile from the numerical values of v_{0}, θ, g, and h_{1}. Show the calculation, including substituted values:

$$
h_{1}=
$$

$$
V_{y}=
$$

\qquad
Now find the numerical value of the flight time t_{1} using

$$
v_{y}=v_{0 y}+a_{y} t
$$

(Show your work above)
$t_{1}=$ \qquad

B.2. Calculate the angle-fired range \boldsymbol{R}_{1} from the horizontal motion

 The equation for the horizontal position x at any time t is:$$
x=v_{0 x} t
$$

Using the muzzle speed v_{0} found in part A and the firing angle θ, find the horizontal component of the initial velocity (in formula form):

$$
v_{0 x}=
$$

When the elapsed time is the hang time t_{1} found above, then the horizontal displacement is the range R_{1}. Substitute the one expression above into the other to show that the angle-fired range R_{1} is:

$$
R_{1}=\left(v_{0} \cos \theta\right) t_{1}
$$

Calculate the numerical value of the range R_{1} :
\qquad $\mathrm{m} / \mathrm{sec}) \cos ($ \qquad)(sec) $=$ \qquad

B.3. Testing the predicted firing range \boldsymbol{R}_{1}

Set your gun at the angle θ following the guidelines of the instructor. Fire it a few times to identify the landing area on the floor. Then place a target sheet on the floor and follow the procedure from earlier to get about six impact points on the target sheet(s). Label the distance to the near edge, circle the points, indicate the measured distances of each impact point from the near edge of the page, and so calculate the range R_{1} from the appropriate average distance. Show the calculation on your target sheet. Write your answer for the measured range here too:

$$
R_{1}(\text { measured })=
$$

\qquad
Compare the measured and calculated (see B.2) ranges by finding the percentage difference:

$$
\% \mathrm{diff}=\left|\frac{R_{1}(\text { measured })-R_{1}(\text { calculated })}{R_{1}(\text { calculated })}\right| \times 100
$$

Show your work:

$$
\% \text { diff = }
$$

\qquad

B.4. Another way to find the hang time for the angle-fired projectile

Another way to calculate the flight time is to use the equation $y=v_{0 y} t+\frac{1}{2} a t^{2}$ and solve for t.
Do this calculation in the space provided on the hand-in sheet. You should get the same answer as you found for t_{1} in part B.1. It will involve solving a quadratic equation. Show all your steps: write down the quadratic formula, substitute the numbers with the correct signs and units, and then find the two solutions. The negative time corresponds to an event before the launch (what do you think this event is?), and can be ignored. The positive one should agree with your previous answer for t_{1}.

Projectile Motion Hand-in Sheet

Name \qquad

Partners:

\qquad
What to turn in:

1. This page, completed, including instructor's check mark for completing the handout.
2. On the back of this page, show the calculation of t_{1} as explained in part B.4.
3. First target sheet with clear calculations for R_{0} (on a separate page if needed)
4. Second target sheet with clear calculations for R_{1}.
5. Any other materials your instructor asks for Staple the pages together in this order.

Instructor check mark showing completed handout calculations:

Fill in the following results from your worksheet:

A. 3	horizontally-fired range R_{0}	
A. 4	height above floor h	
A. 4	muzzle velocity v_{0}	
B. 1	height above floor h_{1}	
B. 1	final vertical velocity v_{y}	
B. 1	flight time t_{1}	
B. 2	calculated angle-fired range R_{1}	
B.3	measured angle-fired range R_{1}	
B. 3	\% difference	

