Characterization of the Magnetic Phase in Ti-Doped Vanadium Dioxide
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Project Purpose: Muon Spin Relaxation (MuSR) [§]: The Experiment:
Use 1 as experimentally accessible analog to H and probe of the E'.t.."‘ « Implant 1i* into sample e ZF (Box=0T) MuSR Measurements
local magnetic environment in Vanadium Dioxide (VO,) to: i o " starts clock » HiTlime and Helios spectrometers, M15 & M20C surface muon
* [dentify transition mechanism (Peierls vs Mott-Hubbard) o | e 1 Drecesses in Bo— B+ B channels at TRIUMF (Vancouver, Canada)
 Understand role dopants play in changing material properties monbean | { oon oeax o g ” - e;t ltn.t v Bulk sintered 7x7x1 mm’ samples, VO,:Ti (1, 3, 5 at%)

such as transitions, conductivity, bandgap, magnetism, etc roN. L2 o~ 0 Hdeeays, CS & Preleletlally | rmperature ranee: <K t 285K

- - - - N along direction of spin cmperature range. O

» Explore magnetism caused by disruption of V-V dimer o il '\ -'

» ¢" hits detector, stops clock Fig. 4: Sample mounted for use in HiTime

» Study H behavior (stability/dynamics, energy barriers, etc)

- N e Time evolution of “+ spin tracked surrounded by 4 detectors (scintillator cubes).
] . e via A (1) of et emission The sample is covered by a thin piece of foil tape to
VO; Properties [1-4]: hold it in position directly on top of another
* Reversible, Metal-Semiconductor Transition (Tyst =340K) Fig. 3: Experimental setup for a typical MuSR experiment with an scintillator (veto cube) that is used to detect any u"
triggered thermally, optically, electrically, barometrically externally applied field [5]. Only one of four positron detectors shown. that miss the sample so that only events from muon
. decay inside the sample are recorded.
e Metallic (T >TMST9 EG NOGV): ; . |
Rutile (£ig 1), reflective, 6 ~10°-10" (€2-cm) Results and Anal! SIS: Time domain asymmetry spectra evolve with temperature (Fig 4) and are
* Semiconducting (T< Tyst, EGg~1eV): e characterized here by the model:
Monoclinic (Flg 2)’ translucent, 6 ~10 1_1 0 3 (QCIH) | 0.25 '(a) \Z/I(-')—zlgl'\?at% : 324;’(' 0208 (b) Va1 Satk : 324.;( 1 PO = Z At COS(VuBefr it + i) A;, A; = Asymmetry for oscillating & sKT components
° 770K ' ZF-uSR ® T77.6K| 1 ' {\; , 9;} = Relaxation rate and phase of oscillating component

* Dopants modify transition temperature and properties
- T1, W, Au (etc.): lowers Tyst ; F, Cr, Al (etc.): raises Tyst[3]
minimal effects on properties other than Tysr

- Adding H reduces Tyst while increasing 6 in monoclinic phase
with 3.8 at% H, Tyst ~ 200K with nominal ¢ difference between
phases. Effect 1s known but role H plays 1s unknown. [4]
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| Fig 4 [left]: Example of time domain spectra from VO,:1i 3 at%, at 2.4 K, 72.7
- K, and 77.6 K. (a) The early time shows a fast relaxing oscillation, indicating a
well-defined magnetic phase which is present only below Tc. (b) Full time
spectra showing major differences in initial asymmetry above and below T¢,
typical for a magnetic transition. The highest temperature spectra shown is
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the u and is characterized by a Kubo-Toyabe function [6].
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This work directly contributes to understanding the role and be- Y A - 50 | 17 & L 005 ST i cooor 4t el
havior of H in bulk VO, compounds; 1t provides the 1nitial dis- e K | cool T8 . s Aaar g _ |
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covery and characterization of the magnetic phases and provides - T e A oL il e e e .
insight into the debated mechanism responsible for the MST. 1 " o £ 2S00 200 900
: .. : : Frequency (MHz) Temperature (K) Temperature (K)
VO has many potpntlal app hcatlons. such as 1 smart windows, Fig. 5: Fast Fourier Transforms of several time- Fig. 6: Fits to primary frequency in the time-domain Fig 7: Temperature dependence of compo-
smart radiators, microwave wave guldgs, optical fiber, ultrafast domain ZF spectra showing at least one precessing ZF-MuSR data on VO,:Ti 3at% (m) and 5 at% (*). All  nent asymmetry for VO,:Ti 3 at%. Asymmetry
tunable aptenna [7]. Appllcathqs require exposure to H, Whlch component developing with decreasmg temperature samples show additional fields in the magnetic re- is proportional to the fraction of the material
has a major effect on the transitions and electrical properties [4]. (top to bottom). The peafﬁ”equency is proportional gion. Here we have only plotted the most prevalent. in that state. As T approaches T¢, the oscillat-
The effect of H 1s known but the role H plays in modifying the (o the measured field (f = y.Bey). ing component (magnetic phase, m) is re-
host has yet to be understood. Fits to predominant frequency in ZF time domain spectra directly measure magnetic field at p” site, yield placed by a.non—re{axmg component (A) like-
F licati o o1 d d hash . c r0) . _ o ly from the increasingly fast fluctuations asso-
or applications, 1t 1S essential to understand aspects such as how 5 at%: Bioe =111.8 0.5 mTasT —-0; Tc=175+2 K o tod with the break Ve low T
1) H may propagate into and behave within VO * 3 at%: Bio,c =224.7+0.5mTasT— 0; Tc=80.0+ 1K ciated with the break-up of the low T long
(1) y Propag . : 2 0. Bioc ' ' > 1€ oL | | range order. At Tc, the oscillation is complete-
(2) magnetic and electrical properties behave in the compounds * 1 at%: Te=~37 £ 2K [not shown above]. By, 1s clearly present and develops with decreasing T, however, below 1y, yeplaced by the static Kubo-Toyabe (sKT,e)

20K significant changes in the time domain signal indicate multiple fields present with very broad distribution. indicating only nuclear fields are present.
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