1-14 When one junction of a
thermocouple is kept at the ice point, and the other junction is at a Celsius
temperature t, the emf |
||||||||||
|
||||||||||
|
||||||||||
If |
||||||||||
|
||||||||||
|
||||||||||
(a) Compute the emf
when t = -100°C, 200°C, 400°C, and 500°C, and sketch a graph of |
||||||||||
|
||||||||||
(b) Suppose the emf
is taken as a thermometric property
and that a temperature scale t* is defined by the linear equation: |
||||||||||
|
||||||||||
|
||||||||||
Let t* = 0 at the ice point, and t* =
100 at the steam point. Find the
numerical values of a and b and sketch a graph of |
||||||||||
|
||||||||||
(c) Find the values of t* when t = -100°C, 200°C, 400°C, and 500°C,
and sketch a graph of t* versus t over this
range. |
||||||||||
|
||||||||||
(d) Is the t* scale a Celsius
scale? Does it have any advantage or
disadvantage compared with the IPTS scale? |
||||||||||
|
||||||||||
Solution |
||||||||||
|
||||||||||
(a)
Compute the emf when t = -100°C, 200°C, 400°C, and
500°C, and sketch a graph of |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Using
MATLAB, the desired values are found: |
||||||||||
|
||||||||||
|
||||||||||
Graph
of E vs t
(note: Your graph should be a full page) |
||||||||||
|
||||||||||
|
||||||||||
(b)
Suppose the emf is taken as a thermometric
property and that a temperature scale
t* is defined by the linear equation: |
||||||||||
|
||||||||||
|
||||||||||
Let
t* = 0 at the ice point, and t* = 100 at the steam point. Find the numerical values of a and b and sketch a graph of |
||||||||||
|
||||||||||
First
plug in for E, the
relationship and we get: |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Now
we can plug in t* = 0 at the ice point (ie. t =0 °C), and t* = 100 at the steam point (ie. t = 100 °C). |
||||||||||
|
||||||||||
At
the ice point we get: |
||||||||||
|
||||||||||
|
||||||||||
This
reduces to |
||||||||||
|
||||||||||
Which
means b = 0. |
||||||||||
|
||||||||||
Now
plugging in for steam point: |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
So: |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Plotting
this in MATLAB (again work turned in should be a full page graph) |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
(c)
Find the values of t* when t = -100°C,
200°C, 400°C, and 500°C, and sketch a graph of t* versus t over this
range. |
||||||||||
|
||||||||||
Plugging
in the equation for E |
||||||||||
|
||||||||||
|
||||||||||
Simplifying: |
||||||||||
|
||||||||||
|
||||||||||
Using
MATLAB, the desired values are found: |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
Now
we can plot this in MATALB |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
(d)
Is the t* scale a Celsius scale? Does
it have any advantage or disadvantage compared with the IPTS scale? |
||||||||||
|
||||||||||
Since
t* = 0 at t = 0°C and t* = 100 at t = 100°C, it can be considered a Celsius
scale. |
||||||||||
|
||||||||||
The
Advantage compared to IPTS scale is the temperature can be calculated
directly, rather than interpolated. |
||||||||||
|
||||||||||
The
Disadvantage is that a particular emf provides two
temperatures and not just one. |
||||||||||
|
||||||||||
MATLAB
code for this problem follows: |
||||||||||
|
||||||||||
%Solution
to PH 360 Homework problem 1-14 %version
2016-01-19 D.W. Donovan clear all; a = 0.50; b = -1e-3 ; ta = [-100 200
400 500]'; |
||||||||||
|
||||||||||
|
||||||||||
Emfa =a*ta +
b*ta.^2; Ansa = [ta Emfa] tap
=[-150:0.001:550]'; Emfp = a*tap +
b*tap.^2; ac = 2.5; Emfc
=[-100:0.001:100]'; tstarc = ac*Emfc; tstard =
1.25*ta-2.5e-3*ta.^2; tstardp =
1.25*tap-2.5e-3*tap.^2; ansd = [ta tstard] anse =
1.25*(100)-2.5e-3*(100).^2 xx = [-150
600]'; yx = [0 0]'; xy = [0 0]'; yy = [-100
100]'; figure hold on; plot (ta, Emfa, 'k*', 'MarkerSize',8) plot (tap,Emfp, 'k-', 'LineWidth',2) plot (xx, xy, 'k--', 'LineWidth',3) plot (xy, yy, 'k--', 'LineWidth',3) axis ([-150
600 -100 100]); xlabel('Temperature,
t, (degrees Celsius)'); ylabel('Emf, \epsilon, (mV)'); tt1a=('Emf vs Temperature - PH 360 Homework Problem 1-14'); tt2='D.W.
Donovan - '; tta=[tt1a,'\newline',tt2,date]; title(tta) figure hold on; plot (Emfc, tstarc,'k-','LineWidth',2) plot (3*xx, 3*xy, 'k--', 'LineWidth',3) plot (3*xy, 3*yy, 'k--', 'LineWidth',3) axis ([-150
150 -275 275]); ylabel('EmpiricalTemperature, t*, (units)'); xlabel('Emf, \epsilon, (mV)'); tt2a=('Empirical
Temperature vs EMF - PH 360 Homework Problem 1-14'); tt2='D.W.
Donovan - '; ttc=[tt2a,'\newline',tt2,date]; title(ttc) figure hold on; plot (ta, tstard, 'k*', 'MarkerSize',8) plot (tap,tstardp, 'k-', 'LineWidth',2) plot (2*xx, 2*xy, 'k--', 'LineWidth',3) plot (2*xy, 2*yy, 'k--', 'LineWidth',3) |
||||||||||
|
||||||||||
|
||||||||||
axis ([-150
600 -200 200]); xlabel('Temperature,
t, (degrees Celsius)'); ylabel('EmpiricalTemperature, t*, (units)'); tt3d=('Empirical
Temperature vs Temperature - PH 360 Homework Problem 1-14'); tt2='D.W.
Donovan - '; ttd=[tt3d,'\newline',tt2,date]; title(ttd) %{ Ansa = -100
-60 200
60 400
40 500
0 ansd = -100
-150 200
150 400
100 500
0 anse = 100 %} |
||||||||||
|
||||||||||
|