|
|||||||||||||||||||
60. The volume of liquid flowing per second is called the volume flow rate Q and has the dimensions of [L]3/[T]. The flow rate of a liquid through a hypodermic needle during an injection can be estimated with the following equation: The length and radius of the needle are L and R, respectively, both of which have the dimension [L]. The pressures at opposite ends of the needle are P2 and P1, both of which have the dimensions of [M]/{[L][T]2}. The symbol h represents the viscosity of the liquid and has the dimensions of [M]/{[L][T]}. The symbol p stands for pi and, like the number 8 and the exponent n, has no dimensions. Using dimensional analysis, determine the value of n in the expression for Q. |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
We now put the units in for
each of the terms |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Since the Pressures are
subtracting and they have the same units we can simplify this set of units to
the following |
|||||||||||||||||||
|
|||||||||||||||||||
Now cancel units where
possible and we get |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
So the units come down to |
|||||||||||||||||||
|
|||||||||||||||||||
The units work if |
|||||||||||||||||||
|
|||||||||||||||||||
So |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|