|
|||||||||||||||||||
32. mmh Two rockets are flying in the same direction
and are side by side at the instant their retrorockets fire. Rocket A has an
initial velocity of +5800 m/s, while rocket B has an initial
velocity of +8600 m/s. After a time t both rockets are again side by side, the displacement of
each being zero. The acceleration of rocket A is –15 m/s2. What is the acceleration of
rocket B? |
|||||||||||||||||||
|
|||||||||||||||||||
The rockets are traveling in
one direction when retrorockets fire which slow them down. Eventually the retrorockets would bring the
rockets to rest. If the retrorockets
are continuing to fire the rockets will begin to move in the opposite
direction than they were originally.
They could arrive at the point in space in which the retrorockets were first fired.
At this point their net displacement would be
zero. If the acceleration is constant
from the retrorockets, then using the
following equation |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Since x = 0, the equation
becomes |
|||||||||||||||||||
|
|||||||||||||||||||
Solving for final velocity |
|||||||||||||||||||
|
|||||||||||||||||||
This means at this point in
space, there are two possible speeds, the original speed in the same
direction and then at a later time the original
speed again, only this time pointing in the other direction. We can use this to solve for time which can then be used to find the other acceleration
since the ships end up together both times. |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Solving for time |
|||||||||||||||||||
|
|||||||||||||||||||
Since we know |
|||||||||||||||||||
|
|||||||||||||||||||
We get |
|||||||||||||||||||
|
|||||||||||||||||||
Now apply to Rocket A |
|||||||||||||||||||
|
|||||||||||||||||||
Now rearrange the equation to
solve a and we can find the acceleration of Rocket B |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Alternatively we could avoid
solving for t by equating the two equations solving for t as follows: |
|||||||||||||||||||
|
|||||||||||||||||||
Now solve for |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|