|
|||||||||||||||||||
*33. mmh A car is traveling at 20.0 m/s, and the driver
sees a traffic light turn red. After 0.530 s (the reaction time), the driver
applies the brakes, and the car decelerates at 7.00 m/s2.
What is the stopping distance of the car, as measured from the point where
the driver first sees the red light? |
|||||||||||||||||||
|
|||||||||||||||||||
We need to break this into two
parts. The driver will travel a
distance while the reaction time is occurring. For this part we have , an acceleration , and a time . The
equation we should use is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
So |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Once the braking occurs and
the car is under acceleration
(Note: - sign since we are braking), we still have , we know , and we are looking for stopping
distance. Use relationship |
|||||||||||||||||||
|
|||||||||||||||||||
Solve for distance |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
So the total stopping distance
is found by adding |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|