|
|||||||||||||||||||
*59. mmh A solid nonconducting
sphere has a positive charge q
spread uniformly throughout its volume. The charge density or charge per unit
volume, therefore, is . Use Gauss’ law to show that the electric field at a point within the sphere at a radius r
has a magnitude of . |
|||||||||||||||||||
(Hint: For a Gaussian surface, use a sphere of
radius r centered within the solid sphere of radius. Note that the net charge
within any volume is the charge density times the volume.) |
|||||||||||||||||||
|
|||||||||||||||||||
Gauss’s Law is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
For a spherical charge
distribution the electric field is radially in or out depending on the sign
of the charge. Using a Sphere as our
Gaussian surface the normal to the sphere is a radius so the angle and Gauss’s law becomes |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Solving for E |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Now is the charge inside
the Gaussian sphere. So that is the
volume charge density times the volume enclosed. The volume charge density is just the total
charge divided by the total volume.
Assuming a charge Q is spread uniformly throughout a sphere of radius
R. |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
SO the charge enclosed in a sphere of radius r is found from |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Putting into the equation for electric field yields |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Which is what we were supposed
to show that the electric field inside a spherical volume of uniformly
distributed charge Q is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|