|
|||||||||||||||||||
**62. A long, thin, straight wire of length L has a positive charge Q distributed uniformly along it. Use Gauss’ law to show
that the electric field created by this wire at a radial distance r has a magnitude of , where |
|||||||||||||||||||
(Hint: For a Gaussian
surface, use a cylinder aligned with its axis along the wire and note that
the cylinder has a flat surface at either end, as well as a curved surface.) |
|||||||||||||||||||
|
|||||||||||||||||||
So the field lines for a charges can be represented as shown above. The field lines that are in directions
other than radially outward from the line of charge will cancel. So the electric
field lines point either radially in or out of the line of charge depending
on whether the charges are positive (outward) or negative (inward). Next the Gaussian
surface is a cylinder and the normal to the area of the cylinder is also
radially in or out. The ends have no
lines passing through so only the cylinder area not the end caps contribute
to the electric flux if the line is infinitely long. So Gauss’s law gives us |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Here the area is , and again so E is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
The charge density λ is the charge divided by the
length so |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
As we were asked to show. |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|