|
|||||||||||||||||||
*9. The drawing shows a parallel plate capacitor that is moving
with a speed of 32 m/s through a 3.6-T magnetic field. The velocity is perpendicular to the magnetic field. The electric field
within the capacitor has a value of 170 N/C, and each plate has an area of 7.5
x 10-4 m2.
What is the magnetic force (magnitude and direction) exerted on the positive
plate of the capacitor? |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
The magnetic force is given by
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
So consider the positive plate
only in the figure below and the relationship of the vectors
, and , then the right hand
rules as indicated provides that the force on the positive plate would be out
of the paper. Additionally consider
that since the negative plate is negative charge the force on the negative
plate would be into the paper! |
|||||||||||||||||||
|
|||||||||||||||||||
So to calculate the magnitude of the force
we need the charge on the positive plate.
We have already the velocity and magnetic field strength. We also have the electric field between the
plates. The relationship for that is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
So |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Since the vectors , and are perpendicular the angle between them is
90° so the magnitude of the magnetic force is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|