|
|||||||||||||||||||
P 2.4-10 The voltage source shown in Figure P 2.4-10 is an adjustable dc voltage source. In other words, the voltage vs is a constant voltage, but the value of that constant can be adjusted. The tabulated data were collected as follows. The voltage, vs, was set to some value, and the voltages across the resistor, va and vb, were measured and recorded. Next, the value of vs was changed, and the voltages across the resistors were measured again and recorded. This procedure was repeated several times. (The values of vs were not recorded.) Determine the value of the resistance, R. |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Figure
P 2.4-10 |
|||||||||||||||||||
|
|||||||||||||||||||
This is a simple circuit so we
can find vb from Ohm’s law |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
We get i
also from Ohm’s law |
|||||||||||||||||||
|
|||||||||||||||||||
Combining these |
|||||||||||||||||||
|
|||||||||||||||||||
Solving for R |
|||||||||||||||||||
|
|||||||||||||||||||
So we could just choose one
set of values, but what was the point of taking several? Better choice would be to plot vb vs va,
find the slope and use the slope in place of so the equation becomes |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
Using MATLAB
we can find the best line and its slope.
From MATLAB we find the slope is 0.6. |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
MATLAB Plot and Code follows: |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
%Program
to find slope of best line for Homework Problem 2.4-10. %Version
2018-12-28 D.W. Donovan clear all; va = [11.75 7.5
5.625 10 4.375]'; vb = [7.05 4.5
3.375 6 2.625]'; x = va; y = vb; a(:,2) = va; a(:,1) =
ones(size(va,2)); c = a\vb; b = c(1); m = c(2); inew = [min(va) : (max(va) - min(va))/1000 : max(va)]'; vnew = m*inew +b; |
|||||||||||||||||||
|
|||||||||||||||||||
R = 40*m; ls = ['Model Slope
is ' num2str(m) ' ']; ly = ['Model
Y-intercept is ' num2str(b) ' (V)']; lv = ['R = (40
\Omega)(slope) = ' num2str(R) ' \Omega']; ans = {'Slope ' m; 'Y-intercept
'
b; 'R = ' R }; ans figure hold on plot(va, vb, 'k *','MarkerSize',20) plot(inew, vnew, 'k-', 'LineWidth', 3) plot(max(va), min(vb), '.w') plot(max(va), min(vb), '.w') plot(max(va), min(vb), '.w') tt1 = 'PH 320
Homework Problem 2.4-10'; tt2 = 'Voltage vs
voltage for a Circuit Element'; ttn = 'D.W.
Donovan -- '; tnl = '\newline'; ttf = [tt1 tnl tt2 tnl ttn
date]; xl = 'Voltage, v,
(V)'; yl = 'Voltage, v,
(V)'; sp = 1; axxmin = min(x)-sp; axxmax = max(x) + sp; axymin = min(y) - sp; axymax = max(y) + sp; title (ttf,'FontSize', 16) xlabel(xl, 'FontSize', 16) ylabel(yl, 'FontSize', 16) legend ('Raw Data', 'Model
Curve', ls, ly, lv, 'Location','SE') legend ('boxoff') axis([axxmin axxmax axymin axymax]) |
|||||||||||||||||||
|
|||||||||||||||||||
%{ ans =
'Slope ' [ 0.6000] 'Y-intercept ' [-1.2545e-15] 'R = ' [ 24.0000] %} |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|