|
|||||||||||||||||||
P7.3-7. (a) Determine the
energy stored in the capacitor in the circuit shown in Figure P7.3-7 when the
switch is closed and the circuit is at steady state. |
|||||||||||||||||||
(b) Determine the energy
stored in the capacitor when the switch is open and the circuit is at steady
state. |
|||||||||||||||||||
|
|||||||||||||||||||
Figure P7.3-7 |
|||||||||||||||||||
|
|||||||||||||||||||
(a) Determine the energy
stored in the capacitor in the circuit shown in Figure P7.3-7 when the switch
is closed and the circuit is at steady state. |
|||||||||||||||||||
|
|||||||||||||||||||
When switch is closed, the
circuit is |
|||||||||||||||||||
|
|||||||||||||||||||
When the circuit is in steady
state, the capacitor acts as an open circuit.
So the voltage across the capacitor is the
same as the 75 kΩ
resistor which is in parallel with it.
The steady state circuit is a simple voltage divider circuit with two identical
resistors each 75 kΩ,
so the voltage divides evenly and is 6 volts.
So the energy stored can be obtained by |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
(b) Determine the energy
stored in the capacitor when the switch is open and the circuit is at steady
state. |
|||||||||||||||||||
|
|||||||||||||||||||
When switch is open the
circuit looks like |
|||||||||||||||||||
|
|||||||||||||||||||
In Steady State there is no
current flow, so there is no voltage dropped across the 75 kΩ resistor and the voltage on
the capacitor is therefore the 12 V of the voltage supply so the energy
stored is |
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|
|||||||||||||||||||
|